mmsegmentation的分割结果可视化

mmsegmentation:https://github.com/open-mmlab/mmsegmentation

 img--->infer,softmax,argmax--->seg

        def show_result(self,
                    img,
                    result,
                    palette=None,
                    win_name='',
                    show=False,
                    wait_time=0,
                    out_file=None,
                    opacity=0.5):
        """Draw `result` over `img`.

        Args:
            img (str or Tensor): The image to be displayed.
            result (Tensor): The semantic segmentation results to draw over
                `img`.
            palette (list[list[int]]] | np.ndarray | None): The palette of
                segmentation map. If None is given, random palette will be
                generated. Default: None. RGB
            win_name (str): The window name.
            wait_time (int): Value of waitKey param.
                Default: 0.
            show (bool): Whether to show the image.
                Default: False.
            out_file (str or None): The filename to write the image.
                Default: None.
            opacity(float): Opacity of painted segmentation map.
                Default 0.5.
                Must be in (0, 1] range.
        Returns:
            img (Tensor): Only if not `show` or `out_file`
        """
        img = mmcv.imread(img)  # (h, w, 3)
        img = img.copy()
        seg = result[0]  # seg.shape=(h, w). The value in the seg represents the index of the palette.
        if palette is None:
            if self.PALETTE is None:
                palette = np.random.randint(
                    0, 255, size=(len(self.CLASSES), 3))
            else:
                palette = self.PALETTE
        palette = np.array(palette)
        assert palette.shape[0] == len(self.CLASSES)
        assert palette.shape[1] == 3
        assert len(palette.shape) == 2
        assert 0 < opacity <= 1.0
        color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)  # (h, w, 3). Drawing board.
        for label, color in enumerate(palette):
            color_seg[seg == label, :] = color  # seg.shape=(h, w). The value in the seg represents the index of the palette.
        # convert to BGR
        color_seg = color_seg[..., ::-1]

        img = img * (1 - opacity) + color_seg * opacity
        img = img.astype(np.uint8)
        # if out_file specified, do not show image in window
        if out_file is not None:
            show = False

        if show:
            mmcv.imshow(img, win_name, wait_time)
        if out_file is not None:
            mmcv.imwrite(img, out_file)

        if not (show or out_file):
            warnings.warn('show==False and out_file is not specified, only '
                          'result image will be returned')
            return img

效果图:

mmsegmentation的分割结果可视化_第1张图片 

 

你可能感兴趣的:(mmsegmentation)