NLP | 简单学习一下NLP中的transformer的pytorch代码

  • 经典transformer的学习
  • 文章转自微信公众号【机器学习炼丹术】
  • 作者:陈亦新(已授权)
  • 联系方式: 微信cyx645016617
  • 欢迎交流,共同进步

文章目录

    • 代码细讲
      • transformer
      • Embedding
      • Encoder_MultipleLayers
      • Encoder
    • 完整代码


代码细讲

transformer

class transformer(nn.Sequential):
    def __init__(self, encoding, **config):
        super(transformer, self).__init__()
        if encoding == 'drug':
            self.emb = Embeddings(config['input_dim_drug'], config['transformer_emb_size_drug'], 50, config['transformer_dropout_rate'])
            self.encoder = Encoder_MultipleLayers(config['transformer_n_layer_drug'], 
                                                    config['transformer_emb_size_drug'], 
                                                    config['transformer_intermediate_size_drug'], 
                                                    config['transformer_num_attention_heads_drug'],
                                                    config['transformer_attention_probs_dropout'],
                                                    config['transformer_hidden_dropout_rate'])
        elif encoding == 'protein':
            self.emb = Embeddings(config['input_dim_protein'], config['transformer_emb_size_target'], 545, config['transformer_dropout_rate'])
            self.encoder = Encoder_MultipleLayers(config['transformer_n_layer_target'], 
                                                    config['transformer_emb_size_target'], 
                                                    config['transformer_intermediate_size_target'], 
                                                    config['transformer_num_attention_heads_target'],
                                                    config['transformer_attention_probs_dropout'],
                                                    config['transformer_hidden_dropout_rate'])

    ### parameter v (tuple of length 2) is from utils.drug2emb_encoder 
    def forward(self, v):
        e = v[0].long().to(device)
        e_mask = v[1].long().to(device)
        print(e.shape,e_mask.shape)
        ex_e_mask = e_mask.unsqueeze(1).unsqueeze(2)
        ex_e_mask = (1.0 - ex_e_mask) * -10000.0

        emb = self.emb(e)
        encoded_layers = self.encoder(emb.float(), ex_e_mask.float())
        return encoded_layers[:,0]
  • 只要有两个组件,一个是Embedding层,一个是Encoder_MultipleLayers模块;
  • forward的输入v是一个元组,包含两个元素:第一个是数据,第二个是mask。对应有效数据的位置。

Embedding

class Embeddings(nn.Module):
    """Construct the embeddings from protein/target, position embeddings.
    """
    def __init__(self, vocab_size, hidden_size, max_position_size, dropout_rate):
        super(Embeddings, self).__init__()
        self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
        self.position_embeddings = nn.Embedding(max_position_size, hidden_size)

        self.LayerNorm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(dropout_rate)

    def forward(self, input_ids):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

        embeddings = words_embeddings + position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings
  • 包含三个组件,一个是Embedding,其他是LayerNorm和Dropout层。
torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None,
 max_norm=None,  norm_type=2.0,   scale_grad_by_freq=False, 
 sparse=False,  _weight=None)

其为一个简单的存储固定大小的词典的嵌入向量的查找表,意思就是说,给一个编号,嵌入层就能返回这个编号对应的嵌入向量,嵌入向量反映了各个编号代表的符号之间的语义关系。

输入为一个编号列表,输出为对应的符号嵌入向量列表。

  • num_embeddings (python:int) – 词典的大小尺寸,比如总共出现5000个词,那就输入5000。此时index为(0-4999)
  • embedding_dim (python:int) – 嵌入向量的维度,即用多少维来表示一个符号。
  • padding_idx (python:int, optional) – 填充id,比如,输入长度为100,但是每次的句子长度并不一样,后面就需要用统一的数字填充,而这里就是指定这个数字,这样,网络在遇到填充id时,就不会计算其与其它符号的相关性。(初始化为0)
  • max_norm (python:float, optional) – 最大范数,如果嵌入向量的范数超过了这个界限,就要进行再归一化。
  • norm_type (python:float, optional) – 指定利用什么范数计算,并用于对比max_norm,默认为2范数。
  • scale_grad_by_freq (boolean, optional) – 根据单词在mini-batch中出现的频率,对梯度进行放缩。默认为False.
  • sparse (bool, optional) – 若为True,则与权重矩阵相关的梯度转变为稀疏张量。

举一个例子:

如果你的整数最大超过了设置的字典的容量,那么就会出错误:
NLP | 简单学习一下NLP中的transformer的pytorch代码_第1张图片

  • Embedding其中有可学习参数!是一个num_embedding * embedding_dim的矩阵。

Encoder_MultipleLayers

class Encoder_MultipleLayers(nn.Module):
    def __init__(self, n_layer, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
        super(Encoder_MultipleLayers, self).__init__()
        layer = Encoder(hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layer)])    

    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
        all_encoder_layers = []
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
        return hidden_states
  • transformer中的embedding,目的是将数据转换成对应的向量。这个Encoder-multilayer则是提取特征的关键。
  • 结构很简单,就是由n_layer个Encoder堆叠而成。

Encoder

class Encoder(nn.Module):
    def __init__(self, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
        super(Encoder, self).__init__()
        self.attention = Attention(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
        self.intermediate = Intermediate(hidden_size, intermediate_size)
        self.output = Output(intermediate_size, hidden_size, hidden_dropout_prob)

    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output    
  • 其中包含了Attention部分,Intermediate和Output。
class Attention(nn.Module):
    def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
        super(Attention, self).__init__()
        self.self = SelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob)
        self.output = SelfOutput(hidden_size, hidden_dropout_prob)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
        return attention_output  
class SelfAttention(nn.Module):
    def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
        super(SelfAttention, self).__init__()
        if hidden_size % num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (hidden_size, num_attention_heads))
        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(hidden_size, self.all_head_size)
        self.key = nn.Linear(hidden_size, self.all_head_size)
        self.value = nn.Linear(hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
    # num_attention_heads = 8, attention_head_size = 128 / 8 = 16
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):
    # hidden_states.shape = [batch,50,128]
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)
        # query_layer.shape = [batch,8,50,16]

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        # attention_score.shape = [batch,8,50,50]
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        return context_layer

这一段和一般的vit处理的流程类似。虽然transformer是从NLP到CV的,但从CV的vit再回看NLP的transformer也是有一种乐趣。里面要注意的点是multihead的概念。本来hidden-size是128,如果设置multihead的数量为8,那么其实好比卷积里面的通道数量。会把128的token看成8个16个token,然后分别做自注意力。但是把multihead比作卷积的概念感觉说的过去,比作分组卷积的概念好像也OK:

  • 比作卷积。如果固定了每一个head的size数量为16,那么head就好比通道数,那么增加head的数量,其实就是增加了卷积核通道数的感觉;
  • 比作分组卷积。如果固定了hidden-size的数量为128,那么head的数量就是分组的数量,那么增加head的数量就好比卷积分组变多,降低了计算量。

-其他部分的代码都是FC + LayerNorm +Dropout,不再赘述。

完整代码

import torch.nn as nn
import torch.nn.functional as F
import copy,math
class Embeddings(nn.Module):
    """Construct the embeddings from protein/target, position embeddings.
    """
    def __init__(self, vocab_size, hidden_size, max_position_size, dropout_rate):
        super(Embeddings, self).__init__()
        self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
        self.position_embeddings = nn.Embedding(max_position_size, hidden_size)

        self.LayerNorm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(dropout_rate)

    def forward(self, input_ids):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

        embeddings = words_embeddings + position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings
class Encoder_MultipleLayers(nn.Module):
    def __init__(self, n_layer, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
        super(Encoder_MultipleLayers, self).__init__()
        layer = Encoder(hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layer)])    

    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
        all_encoder_layers = []
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
            #if output_all_encoded_layers:
            #    all_encoder_layers.append(hidden_states)
        #if not output_all_encoded_layers:
        #    all_encoder_layers.append(hidden_states)
        return hidden_states
class Encoder(nn.Module):
    def __init__(self, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
        super(Encoder, self).__init__()
        self.attention = Attention(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
        self.intermediate = Intermediate(hidden_size, intermediate_size)
        self.output = Output(intermediate_size, hidden_size, hidden_dropout_prob)

    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output    
class Attention(nn.Module):
    def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
        super(Attention, self).__init__()
        self.self = SelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob)
        self.output = SelfOutput(hidden_size, hidden_dropout_prob)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
        return attention_output  

class SelfAttention(nn.Module):
    def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
        super(SelfAttention, self).__init__()
        if hidden_size % num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (hidden_size, num_attention_heads))
        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(hidden_size, self.all_head_size)
        self.key = nn.Linear(hidden_size, self.all_head_size)
        self.value = nn.Linear(hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        return context_layer
    
class SelfOutput(nn.Module):
    def __init__(self, hidden_size, hidden_dropout_prob):
        super(SelfOutput, self).__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.LayerNorm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states   
    
    
class Intermediate(nn.Module):
    def __init__(self, hidden_size, intermediate_size):
        super(Intermediate, self).__init__()
        self.dense = nn.Linear(hidden_size, intermediate_size)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = F.relu(hidden_states)
        return hidden_states
    
class Output(nn.Module):
    def __init__(self, intermediate_size, hidden_size, hidden_dropout_prob):
        super(Output, self).__init__()
        self.dense = nn.Linear(intermediate_size, hidden_size)
        self.LayerNorm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states
class transformer(nn.Sequential):
    def __init__(self, encoding, **config):
        super(transformer, self).__init__()
        if encoding == 'drug':
            self.emb = Embeddings(config['input_dim_drug'], config['transformer_emb_size_drug'], 50, config['transformer_dropout_rate'])
            self.encoder = Encoder_MultipleLayers(config['transformer_n_layer_drug'], 
                                                    config['transformer_emb_size_drug'], 
                                                    config['transformer_intermediate_size_drug'], 
                                                    config['transformer_num_attention_heads_drug'],
                                                    config['transformer_attention_probs_dropout'],
                                                    config['transformer_hidden_dropout_rate'])
        elif encoding == 'protein':
            self.emb = Embeddings(config['input_dim_protein'], config['transformer_emb_size_target'], 545, config['transformer_dropout_rate'])
            self.encoder = Encoder_MultipleLayers(config['transformer_n_layer_target'], 
                                                    config['transformer_emb_size_target'], 
                                                    config['transformer_intermediate_size_target'], 
                                                    config['transformer_num_attention_heads_target'],
                                                    config['transformer_attention_probs_dropout'],
                                                    config['transformer_hidden_dropout_rate'])

    ### parameter v (tuple of length 2) is from utils.drug2emb_encoder 
    def forward(self, v):
        e = v[0].long().to(device)
        e_mask = v[1].long().to(device)
        print(e.shape,e_mask.shape)
        ex_e_mask = e_mask.unsqueeze(1).unsqueeze(2)
        ex_e_mask = (1.0 - ex_e_mask) * -10000.0

        emb = self.emb(e)
        encoded_layers = self.encoder(emb.float(), ex_e_mask.float())
        return encoded_layers[:,0]

你可能感兴趣的:(笔记,transformer,自然语言处理,pytorch)