论文下载地址: https://www.ijcai.org/Proceedings/2019/0187.pdf
发表期刊:IJCAI
Publish time: 2019
作者及单位:
数据集: 正文中的介绍
代码:
其他:
其他人写的文章
简要概括创新点: 2018_NACAL_KBGAN: Adversarial Learning for Knowledge Graph Embeddings将GANs与Knowledge graph embeddings(KGE)相结合,提高了KGE的效率,针对的就是negative smaple。本文就把Adversial Learning套在SoRec上,还是针对negative sample
- (1) In this paper, we present a Deep Adversarial SOcial recommendation model (DASO), which learns separated user representations in item domain and social domain. (在本文中,我们提出了一个深度对抗性社会推荐模型(DASO),该模型学习项目域和社会域中分离的用户表示。)
- (2) Particularly, we propose to transfer users’ information from social domain to item domain by using a bidirectional mapping method. (特别地,我们建议使用双向映射方法将用户的信息从社交领域转移到项目领域。)
- (3) In addition, we also introduce the adversarial learning to optimize our entire framework by generating informative negative samples. (此外,我们还引入了对抗式学习,通过生成信息丰富的负样本来优化我们的整个框架。)
- (4) 关于生成器和判别器,与通用的模型的作用是一样的。
(1) In recent years, we have seen an increasing amount of attention on social recommendation, which harnesses social relations to boost the performance of recommender systems [Tang et al., 2016b; Fan et al., 2019; Wang et al., 2016]. Social recommendation is based on the intuitive ideas that people in the same social group are likely to have similar preferences, and that users will gather information from their experienced friends (e.g., classmates, relatives, and colleagues) when making decisions. Therefore, utilizing users’ social relations has been proven to greatly enhance the performance of many recommender systems [Ma et al., 2008; Fan et al., 2019; Tang et al., 2013b; 2016a]. (近年来,我们看到社会推荐越来越受到关注,它利用社会关系提升推荐系统的性能[Tang等人,2016b;Fan等人,2019;Wang等人,2016]。 社交推荐基于一种直观的想法,即同一社交群体中的人可能有相似的偏好,用户在做出决策时会从经验丰富的朋友(例如同学、亲戚和同事)那里收集信息。 因此,利用用户的社会关系已被证明能极大地提高许多推荐系统的性能[Ma等人,2008年;Fan等人,2019年;Tang等人,2013b;2016a]。)
(2) In Figure 1, we observe that in social recommendation we have both the item and social domains, which represent the user-item interactions and user-user connections, respectively. Currently, the most effective way to incorporate the social information for improving recommendations is when learning user representations, which is commonly achieved in ways such as, (在图1中,我们观察到,在社交推荐中,我们同时拥有条目和社交域,它们分别代表用户条目交互和用户-用户连接。目前,整合社交信息以改进推荐的最有效方法是 学习用户表示,这通常通过以下方式实现:)
However, as shown in Figure 1, although users bridge the gap between these two domains, their representations should be heterogeneous. This is because users behave and interact differently in the two domains. Thus, using a unified user representation may restrain user representation learning in each respective domain and results in an inflexible/limited transferring of knowledge from the social relations to the item domain. Therefore, one challenge is to learn separated user representations in two domains while transferring the information from the social domain to the item domain for recommendation. (然而,如图1所示,尽管用户在这两个域之间架起了桥梁,但他们的表示应该是异构的。 这是因为用户在这两个域中的行为和交互方式不同。因此,使用统一的用户表示可能会限制每个相应领域中的用户表示学习,并导致知识从社会关系到项目领域的不灵活/有限转移。因此,一个挑战是在将信息从社交领域转移到项目领域进行推荐的同时,学习两个领域中分离的用户表示。)
(3) In this paper, we adopt a nonlinear mapping operation to transfer user’s information from the social domain to the item domain, while learning separated user representations in the two domains. (在本文中,我们采用非线性映射操作将用户的信息从社交领域转移到项目领域,同时在这两个领域中学习分离的用户表示。)
Nevertheless, learning the representations is challenging due to the inherent data sparsity problem in both domains. Thus, to alleviate this problem, we propose to use a bidirectional mapping between the two domains, such that we can cycle information between them to progressively enhance the user’s representations in both domains. (然而,由于这两个领域都存在固有的数据稀疏性问题,因此学习这些表示具有挑战性。因此,为了缓解这个问题,我们建议在两个域之间使用双向映射,这样我们可以在它们之间循环信息,以逐步增强用户在两个域中的表示。)
However, for optimizing the user representations and item representations, most existing methods utilize the negative sampling technique, which is quite ineffective [Wang et al., 2018b]. This is due to the fact that during the beginning of the training process, most of the negative user-item samples are still within the margin to the real user-item samples, but later during the optimization process, negative sampling is unable to provide “difficult” and informative samples to further improve the user representations and item representations [Wang et al., 2018b; Cai and Wang, 2018]. Thus, it is desired to have samples dynamically generated throughout the training process to better guide the learning of the user representations and item representations. (然而,为了优化用户表示和项目表示,大多数现有方法都使用负采样技术,这是非常无效的[Wang等人,2018b]。这是因为在培训过程开始时,大多数负面用户项样本仍在与真实用户项样本的差距内,但在优化过程的后期,负抽样无法提供“困难”且信息丰富的样本,以进一步改善用户表征和项目表征[Wang等人,2018b;Cai和Wang,2018]。因此,希望在整个训练过程中 动态生成样本 ,以更好地指导用户表示和项目表示的学习。)
(4)Recently, Generative Adversarial Networks (GANs) [Goodfellow et al., 2014], which consists of two models to process adversarial learning, have shown great success across various domains due to their ability to learn an underlying data distribution and generate synthetic samples [Mao et al., 2017; 2018; Brock et al., 2019; Liu et al., 2018; Wang et al., 2017; 2018a; Derr et al., 2019]. (最近,生成性对抗网络(GANs) [Goodfello et al.,2014]由两个模型组成,用于处理对抗学习,由于其能够学习底层数据分布并生成合成样本,在各个领域取得了巨大成功)
(5)Thus, we propose to harness adversarial learning in social recommendation to generate “difficult” negative samples to guide our framework in learning better user and item representations while further utilizing it to optimize our entire framework. (因此,我们建议在社会推荐中利用对抗性学习来生成“困难的”负面样本,以指导我们的框架学习更好的用户和项目表示,同时进一步利用它优化我们的整个框架。)
Our major contributions can be summarized as follows:
(1)The architecture of the proposed model is shown in Figure 2. The information is from two domains, which are the item domain I I I and the social domain S S S. (提出的模型的架构如图2所示。信息来自两个领域,即项目域I和社交域S)
(2)There are four types of representations in the two domains.
(1)In social networks, a person’s preferences can be influenced by their social interactions, suggested by sociologists [Fan et al., 2019; 2018; Wasserman and Faust, 1994]. Therefore, a user’s social relations from the social network should be incorporated into their user representation in the item domain. (社会学家建议,在社交网络中,一个人的偏好可能会受到他们的社交互动的影响[Fan等人,2019年;2018年;瓦瑟曼和浮士德,1994年]。因此,来自社交网络的用户社交关系应该被纳入他们在项目域中的用户表示中。)
(2)We propose to adopt nonlinear mapping operation to transfer user’s information from the social domain to the item domain. (我们建议采用非线性映射操作将用户信息从社交领域转移到项目领域。)
(1)As user-item interactions and user-user connections are often very sparse, learning separated user representations is challenging. (由于用户项交互和用户-用户连接通常非常稀疏,因此学习分离的用户表示是一项挑战。)
(2)This Bidirectional Mapping allows knowledge to be transferred between item and social domains. To learn these mappings, we further introduce cycle reconstruction. Its intuition is that transferred knowledge in the target domain should be reconstructed to the original knowledge in the source domain. Next we will elaborate cycle reconstruction. (这种双向映射允许知识在项目和社交领域之间转移。为了学习这些映射,我们进一步引入循环重构。它的直觉是,目标领域中转移的知识应该重建为源领域中的原始知识。接下来我们将详细介绍循环重建。)
(3)For user u i u_i ui’s item domain representation p i I p^I_i piI, the user representation with cycle reconstruction should be able to map p i I p^I_i piI back to the original domain, as follows, p i I ⟶ h I → S ( p i I ) ⟶ h S → I ( h I → S ( p i I ) ) ≈ p i I p^I_i \longrightarrow h^{I\to S}(p^I_i) \longrightarrow h^{S\to I}(h^{I\to S}(p^I_i)) \approx p^I_i piI⟶hI→S(piI)⟶hS→I(hI→S(piI))≈piI.
(4)We can formulate this procedure using a cycle reconstruction loss, which needs to be minimized, as follows,
(1)To address the limitation of negative sampling for recommendation on the ranking task, we propose to harness adversarial learning to generate “difficult” and informative samples to guide the framework in learning better user and item representations in the item domain. As shown in the bottom left part of Figure 2, the adversarial learning on item domain consists of two components: (为了解决负采样在排名任务中的局限性,我们建议利用对抗性学习生成“困难”且信息丰富的样本,以指导框架更好地学习项目域中的用户和项目表示。如图2左下角所示,项目领域的对抗性学习由两个部分组成:)
(2)Formally, D I D^I DI and G I G^I GI are playing the following two-player minimax game with value function L a d v I ( G I , D I ) L^I_{adv}(G^I, D^I) LadvI(GI,DI), (形式上, D I D^I DI 和 G I G^I GI正在玩下面的两层极小极大值游戏)
(1) On the other hand, the purpose of the generator G I G^I GI is to approximate the underlying real conditional distribution p r e a l I ( v ∣ u i ) p^I_{real}(v|u_i) prealI(v∣ui), and generate the most relevant items for any given user u i u_i ui. (另一方面,生成器 G I G^I GI的目的是近似底层实条件分布 p r e a l I ( v ∣ u i ) p^I_{real}(v|u_i) prealI(v∣ui), 并为任何给定用户 u i u_i ui生成最相关的项目.)
(2) We define the generator using the softmax function over all the items according to the transferred user representation p i S I p^{SI}_i piSI from social domain to item domain: (我们根据从社交域到项目域传输的用户表示 p i S I p^{SI}_i piSI,在所有项上使用softmax函数定义生成器)
(3) We note that the process of generating a relevant item for a given user is discrete. Thus, we cannot optimize the generator G I G^I GI via stochastic gradient descent methods [Wang et al., 2017]. Following [Sutton et al., 2000; Schulman et al., 2015], we adopt the policy gradient method usually adopted in reinforcement learning to optimize the generator. (我们注意到,为给定用户生成相关项的过程是离散的。因此,我们无法通过随机梯度下降法优化发生器 G I G^I GI[Wang等人,2017]。继[Sutton等人,2000年;Schulman等人,2015年]之后,我们采用 强化学习 中通常采用的策略梯度法来优化生成器。)
(4) To learn the parameters for the generator, we need to perform the following minimization problem: (为了了解生成器的参数,我们需要执行以下最小化问题:)
(5) Now, this problem can be viewed in a reinforcement learning setting, where K ( x i I , y j I ) = l o g ( 1 + e x p ( f ϕ D I I ( x i I , y j I ) ) ) K(x^I_i, y^I_j) = log(1 + exp(f^I_{\phi^I_D}(x^I_i, y^I_j))) K(xiI,yjI)=log(1+exp(fϕDII(xiI,yjI))) is the reward given to the action “selecting v i v_i vi given a user u i u_i ui” performed according to the policy probability G I ( v ∣ u i ) G^I(v|u_i) GI(v∣ui). The policy gradient can be written as: (现在,这个问题可以在强化学习环境中查看)
(6) The optimal parameters of G I G^I GI and D I D^I DI can be learned by alternately minimizing and maximizing the value function L a d v I ( G I , D I ) L^I_{adv}(G^I, D^I) LadvI(GI,DI). (通过交替最小化和最大化值函数 L a d v I ( G I , D I ) L^I_{adv}(G^I, D^I) LadvI(GI,DI),可以学习 G I G^I GI和 D I D^I DI的最佳参数. )
(7) Note that different from the way of optimizing user and item representations with the typical negative sampling on traditional recommender systems, the adversarial learning technique tries to generate “difficult” and high-quality negative samples to guide the learning of user and item representations. (请注意,与传统推荐系统上典型的负采样优化用户和项目表示不同,对抗学习技术试图生成“困难”和高质量的负采样,以指导用户和项目表示的学习。)
(1) In order to learn better user representations from the social perspective, another adversarial learning is harnessed in the social domain. Likewise, the adversarial learning in the social domain consists of two components, as shown in the bottom right part of Figure 2. (为了从社交角度学习更好的用户表示,在社交领域中还利用了另一种对抗性学习。同样,社交领域中的对抗性学习由两部分组成,如图2右下部分所示。)
Discriminator D S ( u i , u ; ϕ D S ) D^S(u_i, u; \phi^S_D) DS(ui,u;ϕDS), parameterized by ϕ D S \phi^S_D ϕDS, aims to distinguish the real connected user-user pairs ( u i , u ) (u_i, u) (ui,u) and the fake user-user pairs generated by the generator G S G^S GS. (旨在区分真正的连接用户对 ( u i , u ) (u_i, u) (ui,u)以及生成器 G S G^S GS生成的假用户对。)
Generator G S ( u ∣ u i ; θ G S ) G^S(u | u_i; \theta^S_G) GS(u∣ui;θGS), parameterized by θ G S \theta^S_G θGS, tries to fit the underlying real conditional distribution p r e a l S ( u ∣ u i ) p^S_{real}(u|ui) prealS(u∣ui) as much as possible, and generates (or, to be more precise, selects) the most relevant users to the given user u i u_i ui. (尝试拟合底层实条件分布p^S_{real}(u|ui)p real S (u)∣用户界面),并生成(或者更准确地说,选择)与给定用户u_i最相关的用户 .)
(2) Formally, D S D^S DS and G S G^S GS are playing the following two-player minimax game with value function L a d v S ( G S , D S ) \mathcal{L}^S_{adv}(G^S, D^S) LadvS(GS,DS), (正在进行下面的两层极小极大值游戏)
(1) The purpose of the generator, G S G^S GS, is to approximate the underlying real conditional distribution p r e a l S ( u ∣ u i ) p^S_{real}(u | u_i) prealS(u∣ui), and generate (or, to be more precise, select) the most relevant users for any given user u i u_i ui. (生成器 G S G^S GS的目的是近似基本的真实条件分布 p r e a l S ( u ∣ u i ) p^S_{real}(u | u_i) prealS(u∣ui),并为任何给定用户 u i u_i ui生成(或者更准确地说,选择)最相关的用户)
(2) We model the distribution using a softmax function over all the other users with the transferred user representation p i I S p^{IS}_i piIS (from the item to social domain), (我们使用softmax函数对所有其他用户的分布进行建模,并使用传输的用户表示 p i I S p^{IS}_i piIS(从项目域到社交域))
(3) Likewise, policy gradient is utilized to optimize the generator G S G^S GS, (同样,策略梯度被用来优化生成器 G S G^S GS)
where the details are omitted here, since it is defined similar to Eq.(5).
(1) With all model components, the objective function of the proposed framework is: (对于所有模型组件,提出的框架的目标函数为:)
(2) There are six representations in our model, including p i I p^I_i piI, q j I q^I_j qjI, x i I x^I_i xiI, y j I y^I_j yjI, p i S p^S_i piS, x i S x^S_i xiS. They are randomly initialized and jointly learned during the training stage. (在我们的模型中有六个表示,包括 p i I p^I_i piI, q j I q^I_j qjI, x i I x^I_i xiI, y j I y^I_j yjI, p i S p^S_i piS, x i S x^S_i xiS它们在训练阶段被随机初始化并联合学习。)
(3) Following the setting of IRGAN [Wang et al., 2017], we adopt the inner product as the score function f φ D I I f^I_{φ^I_D} fφDII and g θ G I I g^I_{\theta^I_G} gθGII in the item domain as follows: f ϕ D I I ( x i I , y j I ) = ( x i I ) T y j I + a j f^I_{\phi^I_D}(x^I_i,y^I_j) = {(x^I_i)}^Ty^I_j+ a_j fϕDII(xiI,yjI)=(xiI)TyjI+aj, g θ G I I ( p i S I , q j I ) = ( p i S I ) T q j I + b j g^I_{\theta^I_G}(p^{SI}_i, q^I_j) = {(p^{SI}_i)}^Tq^I_j+ b_j gθGII(piSI,qjI)=(piSI)TqjI+bj, (按照IRGAN[Wang等人,2017]的设置,我们采用内积作为项目域中的得分函数 f φ D I I f^I_{φ^I_D} fφDII和 g θ G I I g^I_{\theta^I_G} gθGII,如下所示)
Table 2 presents the performance of all recommendation methods. We have the following findings: (表2给出了所有推荐方法的性能。我们有以下发现:)
Next, we investigate how the value of λ \lambda λ affects the performance of the proposed framework. (接下来,我们研究 λ \lambda λ的值如何影响所提出框架的性能。)
(1) As suggested by the social theories [Marsden and Friedkin, 1993], people’s behaviours tend to be influenced by their social connections and interactions. Many existing social recommendation methods [Fan et al., 2018; Tang et al., 2013a; 2016b; Du et al., 2017; Ma et al., 2008] have shown that incorporating social relations can enhance the performance of the recommendations. (正如社会理论[Marsden and Friedkin,1993]所指出的那样,人们的行为往往会受到社会关系和互动的影响。许多现有的社会推荐方法[Fan et al.,2018;Tang et al.,2013a;2016b;Du et al.,2017;Ma et al.,2008]表明,融入社会关系可以提高推荐的绩效。)
In addition, deep neural networks have been adopted to enhance social recommender systems. (此外,深度神经网络已被用于增强社会推荐系统)
(2) Some recent works have investigated adversarial learning for recommendation.
Despite the compelling success achieved by many works, little attention has been paid to social recommendation with adversarial learning. Therefore, we propose a deep adversarial social recommender system to fill this gap. (尽管许多作品取得了令人信服的成功,但很少有人关注具有对抗性学习的社会推荐。因此,我们提出了一个深度对抗的社会推荐系统来填补这一空白。)