- ubuntu18.04 配置 mid360并测试fast_lio
hero_heart
电脑
1.在买到Mid360之后,我们可以看到mid360延伸出来了三组线。第一组线是电源线,包含了红色线正极,和黑色线负极。一般可以用来接9-27v的电源,推荐接12v的电源转换器,或者接14.4v的电源转换器。第二组线是信号线,共5根线,包含了2根pps线,秒脉冲;包含了2根GPS信号输入和GPS信号输出线,和一根地线。第三组线是数据线,是一个网线,直接连接笔记本就可以了2.IP配置2.1先把mid
- 动手实践OpenHands系列学习笔记17:构建自定义OpenHands应用
笔记17:构建自定义OpenHands应用一、引言OpenHands作为可扩展的AI驱动软件开发代理平台,不仅提供了丰富的内置功能,还允许开发者构建自定义应用和扩展。通过基于OpenHands的核心能力,开发者可以创建针对特定领域或工作流的专用AI代理应用。本笔记将探讨OpenHands的可扩展架构,分析自定义应用的设计模式,并通过实践构建一个专门的代码重构助手应用。二、OpenHands扩展性架
- 动手实践OpenHands系列学习笔记15:无头模式架构
JeffWoodNo.1
笔记架构
笔记15:无头模式架构一、引言无头模式(HeadlessMode)是现代软件系统中的重要架构模式,允许应用程序在没有图形界面的情况下运行,特别适用于自动化场景、CI/CD流水线和系统集成。OpenHands作为先进的AI驱动开发代理平台,提供了强大的无头模式支持。本笔记将探讨无头架构设计原则,分析OpenHands的无头模式实现,并通过实践构建一个使用无头模式API的自动化工作流。二、无头架构设计
- 动手实践OpenHands系列学习笔记8:后端服务开发
JeffWoodNo.1
笔记
笔记8:后端服务开发一、引言后端服务是AI代理系统的技术基础,负责处理业务逻辑、状态管理和外部集成。本笔记将探讨API设计与服务架构理论,分析OpenHands的后端设计特点,并通过实践构建一个模拟OpenHands核心功能的后端服务模块。二、API设计与服务架构理论2.1API设计原则RESTful设计:资源化URL设计、HTTP方法语义GraphQL:声明式数据查询、减少请求次数API版本控制
- 动手实践OpenHands系列学习笔记9:容器安全加固
JeffWoodNo.1
笔记安全
笔记9:容器安全加固一、引言容器技术虽然提供了环境隔离,但仍存在潜在的安全风险。本笔记将探讨容器安全的基本原则,分析OpenHands中的安全考量,并实现一套容器安全加固方案,确保在保持功能性的同时提升系统安全性。二、容器安全基础理论2.1容器安全风险分析逃逸风险:容器突破隔离边界访问宿主机特权提升:获取比预期更高的系统权限资源耗尽:DoS攻击导致系统资源枯竭镜像安全:镜像中潜在的漏洞和恶意代码供
- 动手实践OpenHands系列学习笔记3:LLM集成基础
JeffWoodNo.1
笔记人工智能
笔记3:LLM集成基础一、引言大型语言模型(LLM)是OpenHands代理系统的核心驱动力。本笔记将深入探讨LLMAPI调用的基本原理,以及如何在实践中实现与Claude等先进模型的基础连接模块,为构建AI代理系统奠定基础。二、LLMAPI调用基础知识2.1LLMAPI基本概念API密钥认证:访问LLM服务的身份凭证提示工程:构造有效请求以获取预期响应推理参数:控制模型输出的各种参数流式响应:增
- 数据库学习笔记-触发器
T_ALH
数据库课程设计数据库存储过程
步骤创建触发器①启动SQLServer查询编辑器,选择要操作数据库,如“sc(学生选课)”数据库。②在查询命令窗口中输入以下CREATETRIGGER语句,创建触发器。为sc(学生选课)表创建一个基于UPDATE操作和DELETE操作的复合型触发器,当修改了该表中的成绩信息或者删除了成绩记录时,触发器被激活生效,显示相关的操作信息。CREATETRIGGERtri_UPDATE_DELETE_sc
- IDEA运行java博客项目halo报错笔记(一)
叶卡
halo博客项目java
1、关于JDK版本在导入项目时查看日志CHANGELOG.md,里面有关于jkd版本适用版本的描述,1.4.3及以后版本不再支持JRE1.8,只能是jdk11及以上的版本,不然导入项目会出错!除此之外,也应该看看其他更新的信息。2、‘fetchBranch(java.lang.String,java.lang.String)’isdeprecatedandmarkedforremoval问题描述:
- CentOS-7的“ifupdown“与Debian的“ifupdown“对比 笔记250706
kfepiza
OS操作系统WindowsLinux等#控制台命令行Shellbashcmd等网络通讯传输协议IPTCPUDP物联centosdebian笔记linux网络
CentOS-7的"ifupdown"与Debian的"ifupdown"对比笔记250706CentOS7和Debian的ifupdown工具名称相同,但在实现机制、配置文件语法和系统集成上存在显著差异。以下是核心对比分析:⚙️一、核心差异概览对比维度CentOS7Debian工具定位network-scripts套件的一部分,依赖传统ifcfg文件独立包(ifupdown),使用/etc/ne
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 【AI智能推荐系统】第二篇:深度学习在推荐系统中的架构设计与优化实践
DeepFaye
人工智能深度学习
第二篇:深度学习在推荐系统中的架构设计与优化实践提示语:“从Wide&Deep到Transformer,深度推荐模型如何突破性能瓶颈?本文将揭秘Netflix、淘宝都在用的深度学习推荐架构,手把手教你设计高精度推荐系统!”目录深度学习推荐系统的核心优势主流深度学习推荐架构解析2.1Wide&Deep模型2.2DeepFM与xDeepFM2.3神经协同过滤(NCF)2.4基于Transformer的
- 鸿蒙设备开发OpenHarmony深度解读之设备认证:HiChain机制部分源码解析1(推荐模块之外)
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)鸿蒙(HarmonyOS)北向开发知识点记录~鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~鸿蒙应用开发与鸿蒙系统开发哪个更有前景?嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~对于大前端开发来说,转鸿蒙开发究竟是福还是祸?鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?记录一场鸿蒙开发岗位面试经历~持续更新中……一、概述H
- 【深度学习】神经网络剪枝方法的分类
烟锁池塘柳0
机器学习与深度学习深度学习神经网络剪枝
神经网络剪枝方法的分类摘要随着深度学习模型,特别是大语言模型(LLM)的参数量爆炸式增长,模型的部署和推理成本变得异常高昂。如何在保持模型性能的同时,降低其计算和存储需求,成为了工业界和学术界的核心议题。神经网络剪枝(Pruning)作为模型压缩的关键技术之一,应运而生。本文将解析剪枝技术的不同分类,深入探讨其原理、优缺点。文章目录神经网络剪枝方法的分类摘要1为什么我们需要剪枝?2分类方法一:剪什
- Python 图像分类入门
超龄超能程序猿
机器学习python分类开发语言
一、介绍图像分类作为深度学习的基础任务,旨在将输入图像划分到预定义的类别集合中。在实际的业务中,图像分类技术是比较常用的一种技术技能。例如,在安防监控中,可通过图像分类识别异常行为;在智能交通系统中,实现对交通标志和车辆类型的快速识别等。本文将通过安装包已有数据带你逐步了解使用Python进行图像分类的全过程。二、环境搭建在开始图像分类项目前,需要确保Python环境中安装了必要的库。主要包括:T
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 深度学习实验:GPU加速,突破性能瓶颈
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习实验:GPU加速,突破性能瓶颈1.背景介绍随着深度学习模型变得越来越复杂和庞大,传统的CPU已经无法满足训练和推理的计算需求。GPU凭借其强大的并行计算能力和专门为矩阵运算优化的架构,成为了深度学习领域的核心加速器。本文将探讨如何利用GPU加速深度学习实验,突破性能瓶颈,提高模型训练和推理的效率。2.核心概念与联系2.1GPU架构GPU(图形处理器)最初是为了加速图形渲染而设计的,但由于其
- 深度学习相关指标工作笔记
Victor Zhong
AI框架深度学习笔记人工智能
这里写目录标题检测指标iou/Gou/Diou/CiouMSE(MeanSquaredError)(均方误差)(回归问题)交叉熵损失函数(CrossEntropyErrorFunction)(分类问题)检测指标iou/Gou/Diou/CiouIntersectionoverUnion(IoU)是目标检测里一种重要的评价值交并比令人遗憾的是IoU无法优化无重叠的bboxes如果用IoU作为loss
- 典型的几种神经网络
Victor Zhong
AI框架神经网络人工智能深度学习
骨干网络CNN(卷积神经网络)RNN(循环神经网络)三级目录CNN(卷积神经网络)包括输入层、隐藏层、输出层:输入层一般为一张图片(w,h,d),输入层数据一般要做归一化处理;隐藏层包含特有的卷积层(卷积核有权重系数)、池化层(没有权重系数)、全连接层,还有残差块?和Inception模块?。;输出层:RNN(循环神经网络)单向的RNN示意图:三级目录
- C++基础复习笔记
xuwzen
C++c++笔记
一、数组定义在C++中,数组初始化有多种方式,以下是常见的几种方法:默认初始化数组元素未显式初始化时,内置类型(如int、float)的元素值未定义(垃圾值),类类型调用默认构造函数。intarr1[5];//元素值未定义聚合初始化(列表初始化)使用花括号{}直接初始化所有元素。若列表元素少于数组长度,剩余元素默认初始化(内置类型为0)。intarr2[3]={1,2,3};//完全初始化inta
- 【大厂机试题+多种解法+算法可视化笔记】欢乐的周末
xuwzen
编码训练算法
题目小华和小为是很要好的朋友,他们约定周末一起吃饭。通过手机交流,他们在地图上选择了多个聚餐地点(由于自然地形等原因,部分聚餐地点不可达),求小华和小为都能到达的聚餐地点有多少个?输入描述第一行输入m和n,m代表地图的长度,n代表地图的宽度。第二行开始具体输入地图信息,地图信息包含:0为通畅的道路1为障碍物(且仅1为障碍物)2为小华或者小为,地图中必定有且仅有2个(非障碍物)3为被选中的聚餐地点(
- cesium-native+OpenGL开发笔记—渲染GIS球
坐标系转换OpenGL坐标系右手坐标系,X轴水平向右,Y轴竖直向上,Z轴指向屏幕外面。Y(绿色,朝上)^|||*---->X(红色,向右)//Z(蓝色,向前)(指向屏幕外)3DTiles坐标系右手坐标系,Z轴朝上Z(蓝色,朝上)^||/Y(绿色,朝屏幕内)|/*---->X(红色,朝右)glTF模型坐标系右手坐标系,Y轴朝上3DTiles和OpenGL坐标系上方向存在差异,实际绘制是在OpenGL
- 【计算机三级】网路技术学习笔记 第二章 中小型网络系统总体规划与设计
努力的小刘@
计算机等级考试网络计算机网络网络协议
计算机三级网络技术二、中小型网络系统总体规划与设计考点(一):网络总体设计基本方法1.核心层网络结构设计整个网络系统的主干部分是核心层网络,是设计与建设的重点,目前应用于核心层网络的技术标准主意要是GE/10GE,核心设备是高性能路由器,连接核心路由器的是具有冗余链路的光纤,整个网络流量的40%-60%都需要有核心层网络来承载直接接入核心路由器采取链路冗余的办法,直接连接两台核心路由器,其特点是直
- 008-HCIP-H12-821题库笔记(101-150)
深度学习0407
网络安全学习笔记笔记网络智能路由器
101、传统的流量统计的实现方法和局限性:(1)基于IP报文计数:无法针对多种信息进行统计(2)使用ACL:要求ACL的容量很大,对于ACL规则以外的流没有办法统计(3)SNMP协议:功能不强。要不断的通过轮询向网管查询,浪费CPU和网络资源(4)端口镜像:成本高,同时消耗设备的一个接口,对于无法镜像的端口无能为力(5)物理层复制:成本高,同时还需要购买专用的硬件设备基于IP报文计数:这种方法虽然
- 【深度学习新浪潮】基于扩散模型的图像编辑加速方法
小米玄戒Andrew
深度学习新浪潮深度学习人工智能扩散模型TransformerDiT图像编辑模型加速
在基于扩散模型的图像编辑任务中,实现高质量与高效加速的平衡需要综合运用模型架构优化、采样策略创新、条件控制增强及硬件加速等多维度技术。一、一步反演与掩码引导的编辑框架通过一步反演框架将输入图像映射到可编辑的潜在空间,结合掩码引导的注意力重缩放机制,实现文本引导的局部编辑。例如,SwiftEdit通过一步反演和注意力重缩放,将编辑时间压缩至0.23秒,比传统多步方法快50倍。具体步骤包括:一步反演:
- 红宝书学习笔记
丰锋ff
学习笔记
list1NO.WordMeaning1remoteadj.偏远的;久远的;遥控的;n.遥控器2removev.挪走;去除;移开;消除3removaln.除去;迁移;免职4remainv.剩下;留下;保持5remaindern.剩余物;剩余人员;余数;v.廉价出售6remainsn.遗迹;遗体;遗骨;剩余物;剩下(物);<"remain"的第三人称单数7remedyn.疗法;纠正办法;v.纠正;治
- 鸿蒙HarmonyOS学习笔记(2)
yuwinter
HarmonyOSharmonyos学习笔记
基本语法概述如下图所示,当开发者点击按钮时,文本内容从“HelloWorld”变为“HelloArkUI”。ArkTS的基本组成说明自定义变量不能与基础通用属性/事件名重复。装饰器:用于装饰类、结构、方法以及变量,并赋予其特殊的含义。如上述示例中@Entry、@Component和@State都是装饰器,@Component表示自定义组件,@Entry表示该自定义组件为入口组件,@State表示组
- HarmonyOS 鸿蒙学习笔记3-UIAbility组件
UIAbility组件UIAbility组件是一种包含UI界面的应用组件,主要用于和用户交互。直白来说就是构建页面,可以通过多个页面来实现功能模块。创建的module默认情况下就是一个ability,除此之外还有HAR(静态资源包)和HSP(动态共享包),主要用于module间共用资源,后续会做详细讲解。主要内容:1.`abilitymodule`目录结构及声明配置;2.生命周期;3.与UI界面数
- 《从Backprop到Diffusion:深度学习的算法进化树全景图》
HeartException
学习人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《从Backprop到Diffusion:深度学习的算法进化树全景图》**展开系统性解析。全文基于算法原理-技术突破-产业重塑的三层逻辑链,融合2025年最新研究成果与产业数据,呈现深度学习四十年的底层技术迁徙路径从Backprop到Diffusion:深度学习的算法进化树全景图副标题:一部算法
- 多模态大模型:技术原理与实战 看清GPT的进化史和创新点
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战看清GPT的进化史和创新点1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习方法1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2GPT系列模型的发展1.3.3多模态大模型的兴起2.核心概念与联系2.1
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文