豆瓣电影评论情感分析(含代码+数据)

文章目录

      • 目的
      • 效果
          • 云图
          • 直方图
      • 全代码+数据地址
      • 核心代码片断
        • data_analysis.py
        • data_tfidf.py
        • data_apriori.py
        • data_kmeans.py

目的

通过分析豆瓣用户电影评论数据,来对不同国家在不同时间内的电影进行情感分析,并通过云图及直方图进行效果展示。

效果

云图

豆瓣电影评论情感分析(含代码+数据)_第1张图片

直方图

全代码+数据地址

资源链接 :https://download.csdn.net/download/zhuqiuhui/85100293

核心代码片断

data_analysis.py

分析随着时间增长,不同国家拍摄的电影类型的变化

with open("data/kmeans.csv", 'r') as outfile:
    data = csv.reader(outfile)
    li = []
    years = []
    movie_dict = {}
    country = []
    for item in data:
        if(item[11]=='nan'):
            continue
        else:
            li.append(item[11])
            years.append(item[3])
            country.append(item[4])
            if(item[4] not in movie_dict):
                movie_dict[item[4]]={item[3]:[item[11]]}
            else:
                if(item[3] not in  movie_dict[item[4]]):
                    movie_dict[item[4]][item[3]]=[item[11]]
                else:
                    movie_dict[item[4]][item[3]].append(item[11])
for k,v in movie_dict.items():
    for k1,v1 in v.items():
         movie_dict[k][k1]=Counter(v1).items()

data_tfidf.py

为由用户电影评论构建 tf-idf 模型抽取的关键短语。分为正向关键短语和负向关键短语。

def data_clean(SetPath):
    corpus_pos = []
    corpus_neg = []
    corpus = []
    result = []
    feature_list = []
    with open(SetPath) as file:
        data = file.readlines()
        for i, item in enumerate(data):
            row = item.strip().split("\t")
            if i == 0 or len(row)<5:
                continue
            else:
                subdata = row[3]
                substr = jieba.lcut(subdata, cut_all=False, HMM=True)  # 默认参数
                if(row[4]=='pos'):
                    corpus_pos.append(" ".join(substr))
                else:
                    corpus_neg.append(" ".join(substr))
                corpus.append(" ".join(substr))

data_apriori.py

为由电影风格标签抽取的关联规则

def runApriori(data_iter, minSupport, minConfidence):
    itemSet, transactionList = getItemSetTransactionList(data_iter)

    freqSet = defaultdict(int)
    largeSet = dict()

    assocRules = dict()
    oneCSet = returnItemsWithMinSupport(itemSet, transactionList, minSupport, freqSet)

    currentLSet = oneCSet

data_kmeans.py

通过 kmeans 算法聚类电影。样本通过 one-hot 编码为特征,然后再使用 kmeans 算法聚类。共聚4类,通过云图展示(见效果)

def data_analysis(Setpath):
    data = pd.read_csv(Setpath,encoding='gbk')  # 读取文件中所有数据
    X_value = []
    for cname in data.columns.values:
        if 'Unnamed' not in cname:
            X_data  = np.array(data[cname])
            model = preprocessing.LabelEncoder()
            model.fit_transform(data[cname])
            X_reshape = X_data.reshape(len(X_data), 1)
            X_value.append(preprocessing.OneHotEncoder().fit_transform(X_reshape).toarray())
    value = np.concatenate(X_value,axis=1)
    y_pred = KMeans(n_clusters=4, random_state=10).fit_predict(value)
    data['cluster']= y_pred.tolist()

    data = np.array(data).tolist()

欢迎如转载,请注明出处!欢迎关注微信公众号:方辰的博客。

你可能感兴趣的:(数据分析,Python,python,数据分析,机器学习,data,analysis,豆瓣评论)