- HarmonyOS Next 企业数据备份与恢复策略
SameX-4869
harmonyos华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)在企业数据备份与恢复方面的技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、备份与恢复的重要性(一)关键作用阐述在企业数字化运营的舞台上,数据是当之无愧的主角,而数据备份与恢复则是确保这场演出顺利进
- 2025最新Linux系统深度优化指南:20个核心技巧与实战案例解析
emmm形成中
linux应用实操服务器linuxgithub
2025最新Linux系统深度优化指南:20个核心技巧与实战案例解析摘要:随着Linux在云计算、大数据、AI等领域的广泛应用,系统性能优化成为运维工程师的核心技能。本文结合2025年最新实践案例,从内核调优、资源管理、安全加固到云原生适配,全面解析Linux系统优化的20项核心技术,助力企业打造高性能、高可用的服务器环境。一、Linux系统优化的重要性与趋势在数字化转型加速的背景下,Linux系
- 决策树(Decision Tree):机器学习中的经典算法
Jason_Orton
机器学习算法决策树随机森林人工智能
1.什么是决策树?决策树(DecisionTree)是一种基于树形结构的机器学习算法,适用于分类和回归任务。其核心思想是通过一系列的规则判断,将数据集不断划分,最终形成一棵树状结构,从而实现预测目标。在决策树中,每个内部节点表示一个特征,每个分支代表一个特征的取值,每个叶子节点对应一个类别或预测值。决策树的目标是构建一棵能够有效区分不同类别的树,并在测试数据上保持较好的泛化能力。2.决策树的工作原
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- 嵌入式开发必读:RTOS选型指南与实例分析
大模型大数据攻城狮
arm开发嵌入式面试嵌入式面经RTOSFreeRTOSNuttXVxWorks
目录一、实时操作系统(RTOS)概述1.1实时性的核心定义1.2关键技术指标指标详解不同RTOS的指标表现1.3RTOS与通用OS的本质区别实例对比使用通用OS的后果二、RTOS选型的重要性三、RTOS选型的关键因素1.实时性要求实时性要求量化分析2.系统资源3.功能需求4.开发工具和支持和开发效率对比5.商业支持和社区活跃度四、常见的RTOS及其适用场景1.FreeRTOS2.VxWorks3.
- Spark-TTS:基于大模型的文本语音合成工具
CITY_OF_MO_GY
魅力语音语音识别深度学习人工智能
GitHub:https://github.com/SparkAudio/Spark-TTSSpark-TTS是一个先进的文本到语音系统,它利用大型语言模型(LLM)的强大功能进行高度准确和自然的语音合成;旨在高效、灵活、强大地用于研究和生产用途。一、介绍SparkTTS完全基于Qwen2.5构建,无需额外的生成模型,它不依赖于单独的模型来生成声学特征,而是直接从LLM预测的代码中重建音频。这种方
- python 支持向量机回归_深入浅出python机器学习---支持向量机SVM 笔记0114-2020
weixin_39864387
python支持向量机回归
题前故事:小D最近也交了一个女朋友,但是这个女孩好像非常情绪化,喜怒无常,让小D捉摸不透,小D女朋友的情绪完全不是“线性可分”的,于是小D想到了SVM算法,也就是大名鼎鼎的一一支持向量机。支持向量机理解引入首先需要知道线性可分和线性不可分的概念我们提取样本特征是“是否有妹子”和“是否有好吃的”这两项的时候,能够很容易用图中的直线把男生的情绪分成“开心”和“不开心”两类,这种情况下我们说样本是线性可
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 基于文本特征的微博谣言检测
机器懒得学习
人工智能大数据图像处理计算机视觉
随着社交媒体的普及,微博等平台成为了信息传播的重要渠道。然而,虚假信息和谣言的传播也带来了严重的社会问题。因此,自动化的谣言检测技术变得尤为重要。本文将介绍如何基于文本特征,使用深度学习模型(如LSTM、CNN)和传统机器学习模型(如SVM)来实现微博谣言检测,并对这些模型的性能进行比较。完整项目地址:基于文本特征的微博谣言检测1.项目概述本项目旨在通过分析微博文本内容,自动检测其中的谣言。系统通
- R语言对高频交易订单流进行建模分析 4
oxuzhenyi
实验楼课程机器学习R
一、实验介绍--订单流模型拟合1.1实验知识点指数核hawkes过程拟合正反馈强度分析订单量影响分析1.2实验环境R3.4.1Rstudio二、订单流模型拟合在上节中我们对订单流数据做了一些统计分析,对交易的一些特征有了一些粗浅的理解,在本节中我们要做的是利用实际数据来拟合hawkes过程,看一看真实数据的订单流动力学中有什么特征。首先我们仍是选出交易时间内的数据:library(tidyvers
- 基于机器学习的恶意软件检测系统的详细设计与实现
源码空间站11
机器学习人工智能课程设计python网络安全信息安全恶意软件检测
以下是一个基于机器学习的恶意软件检测系统的详细设计与实现,适合作为课程作业或项目开发。我们将实现一个通过机器学习模型分析恶意软件特征来检测文件是否为恶意软件的系统。总体思路数据准备:选择现有的恶意软件数据集(如Kaggle的恶意软件数据集)或构造模拟数据集。数据集中包含文件的特征(如二进制特征、字符串特征、API调用特征等)和标签("恶意"或"正常")。特征提取:提取文件的静态特征(如文件大小、字
- 交易员必懂的“货币性格学”:如何给你的策略选对交易品种?
EagleTrader
金融
在市场中,每个货币对都有其独特的“性格”——波动规律、驱动因素和风险特征。就像人类性格决定行为模式一样,理解货币对的“性格”是制定差异化策略的关键。本文EagleTrader将从多角度去了解货币对,并分享如何根据其特性调整自己的交易策略。货币对“性格”的构成要素波动性不同货币对的价格波动幅度和频率差异是显著的。例如,欧元/美元(EUR/USD)作为市场中交易量最大的货币对之一,其波动相对较为平稳,
- 人生建议往死里学网络安全!零基础也能跨行学习!!漏洞挖掘还能做副业
黑客老哥
web安全学习安全网络系统安全
一、网络安全的重要性:从‘不学会被黑’到‘学会保护别人’网络安全的概念现在不再是技术圈的独立话题,它已经渗透到社会的各个领域。从个人的隐私保护、企业的数据安全,到国家的信息防护,网络安全几乎影响了每一个人的生活。无论是黑客攻击、勒索病毒、数据泄露,还是国家间的信息战,网络安全已经成为现代社会的基础设施之一。所以,首先要明白学习网络安全的重要性:你不仅是在学习技术,更多的是在为自己和他人的安全“筑城
- 基于深度学习的恶意软件检测系统:设计与实现
机器懒得学习
深度学习人工智能
引言随着信息技术的飞速发展,恶意软件(如病毒、木马、勒索软件等)对全球网络安全构成了严重威胁。传统的恶意软件检测方法(如特征码匹配、行为分析等)在面对新型恶意软件变种时往往力不从心。近年来,深度学习技术在模式识别和分类任务中取得了显著成效,为恶意软件检测领域带来了新的机遇。本文将详细介绍一个基于深度学习的恶意软件检测系统的开发过程,该系统利用长短期记忆网络(LSTM)对Windows可执行程序的A
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- 软件架构--架构模式、特征
软件不硬
软件设计架构微服务
1、概述1.1定义软件架构软件架构包含系统的结构,系统必须支持的架构特征、架构决策以及设计原则。系统的结构,是指实现该系统的一种或多种风格(比如微服务、分层和微内核等)。架构特征,定义系统的成功标准,这些标准与系统的功能正交。(比如性能、可扩展和安全性等)架构决策,一组关于如何构建系统的规则。设计原则,与架构决策不同,设计原则是指导原则,而不是必须遵循的规则。1.2架构师的角色期望制定架构决策持续
- AF3 squeeze_features函数解读
qq_27390023
pytorch深度学习人工智能生物信息学
AlphaFold3data_transforms模块的squeeze_features函数的作用去除蛋白质特征张量中不必要的单维度(singletondimensions)和重复维度,以使其适配AlphaFold3预期的输入格式。源代码:defsqueeze_features(protein):"""Removesingletonandrepeateddimensionsinproteinfea
- Java基础系列:深入解析抽象类、接口与Lambda表达式及避坑指南
JouJz
java开发语言
目录一、抽象类:半成品的艺术1.核心特征解析2.典型应用场景3.三大经典陷阱陷阱1:尝试实例化抽象类陷阱2:未实现全部抽象方法陷阱3:构造方法调用可覆盖方法二、接口:行为契约的进化1.接口的现代形态(Java8+)2.接口与抽象类对比3.五大核心陷阱陷阱1:默认方法冲突陷阱2:常量隐藏陷阱3:静态方法陷阱陷阱4:函数式接口误用陷阱5:接口演化风险三、Lambda表达式:简洁之美与暗礁1.核心语法全
- 物联网核心技术M2M的构成、基本特征和应用类别
一抹斜阳尽余辉
物联网M2M物联网技术
现阶段,许多公司都在引进新的面向客户的相关产品和服务以改善现有的产品,增加收益并且创造新的收益机会。根据跨国通讯公司沃达丰的M2M晴雨表数据,在已经应用M2M技术的企业中,有66%声称他们的战略侧重于外部利益相关者,M2M的趋势已经显而易见。全球已经有超过四分之一的企业在应用M2M技术,随着M2M技术越来越普遍,越来越多的企业意识到M2M技术的无限可能性:不仅能使企业内部业务流程自动化,还能够驱动
- 云计算:虚拟化、容器化与云存储技术详解
Evaporator Core
#深度学习网络工程师网络规划设计师云计算
在上一篇中,我们深入探讨了网络安全的核心技术,包括加密、认证和防火墙,并通过实际案例和细节帮助读者全面理解这些技术的应用和重要性。今天,我们将转向一个近年来迅速发展的领域——云计算。云计算通过提供按需访问的计算资源,彻底改变了IT基础设施的构建和管理方式。本文将详细介绍云计算的核心技术,包括虚拟化、容器化和云存储,并通过实际案例和细节帮助读者全面理解这些技术的应用和优势。一、云计算概述1.1云计算
- 支持向量机——SVM
big_matster
周志华机器学习支持向量机算法
支持向量机支持向量机是一种经典的二分类模型,基本模型定义为特征空间中的最大间隔的线性分类器,其学习的优化目标便是间隔最大化,因此,支持向量机本身可以转换一个凸二次规划求解问题。函数间隔和几何间隔对于二分类学习,假设现在的数据是线性可分的,这时分类学习最基本的想法就是找到一个合理的超平面,该超平面能够将不同类别的样本分开,类似于二维平面使用ax+by+c=0ax+by+c=0ax+by+c=0来表示
- Android Glide 缓存模块源码深度解析
&有梦想的咸鱼&
androidglide缓存
一、引言在Android开发领域,图片加载是一个极为常见且关键的功能。Glide作为一款被广泛使用的图片加载库,其缓存模块是提升图片加载效率和性能的核心组件。合理的缓存机制能够显著减少网络请求,降低流量消耗,同时加快图片显示速度,为用户带来流畅的使用体验。本文将深入Glide缓存模块的源码,从整体架构到具体实现细节,全方位剖析其工作原理。二、Glide缓存模块概述2.1缓存的重要性在移动应用中,图
- 第八十四课:HarmonyOS Next 的教育与培训
小_铁
HarmonyOSNext华为HarmonyOSNext
HarmonyOSNext的教育与培训HarmonyOSNext的教育与培训的重要性培养专业人才,驱动技术创新在科技飞速发展的当下,HarmonyOSNext作为新兴的操作系统,对专业人才的需求极为迫切。通过开展针对性的教育与培训,能够为行业培养大量熟悉HarmonyOSNext技术体系的专业人员。这些专业人才在开发过程中,能够基于HarmonyOSNext的特性进行创新。例如,在分布式应用开发方
- javascript正则
努力的程序员30*15k
javascript正则表达式开发语言
@TOC引言无意中从网上查找到一篇关于正则表达式的好文章,就进行了分享给大家,希望对大家有帮助。亲爱的读者朋友,如果你点开了这篇文章,说明你对正则很感兴趣。想必你也了解正则的重要性,在我看来正则表达式是衡量程序员水平的一个侧面标准。关于正则表达式的教程,网上也有很多,相信你也看了一些。与之不同的是,本文的目的是希望所有人认真读完,都有实质性的提高。本文内容共有七章,用JavaScript语言完整地
- (即插即用模块-特征处理部分) 三十、(2024) BFAM & CBM & DFEM 特征聚合+特征提取+边界感知
御宇w
即插即用-特征处理深度学习计算机视觉即插即用模块
文章目录1、BitemporalFeatureAggregationModule2、ChangeBoundary-AwareModule3、DeepFeatureExtractionModule4、代码实现paper:B2CNet:AProgressiveChangeBoundary-to-CenterRefinementNetworkforMultitemporalRemoteSensingIm
- 【人工智能基础】生成模型:让数据“无中生有”的神奇魔法
roman_日积跬步-终至千里
#人工智能基础知识人工智能
文章目录一、生成模型的发展脉络二、生成模型的基本原理三、主要生成模型及其逻辑1、生成对抗网络(GAN)2、变分自编码器(VAE)3、扩散模型(DPM)4、基于能量的模型(EBM)5、正规化流(NF)四、生成模型对比分析五、生成模型的应用拓展一、生成模型的发展脉络在深度学习尚未兴起的时期,计算机视觉领域的传统图像生成算法主要依赖纹理合成和纹理映射等技术。这些算法基于手工设计的特征进行图像构建,然而,
- 程序员必看!快速提升技术的实用指南
不太会写
后端
程序员必看!快速提升技术的实用指南在竞争激烈的技术领域,程序员们都渴望快速提升自己的技术水平,以应对不断变化的行业需求,抓住更多的发展机遇。那么,有没有一些行之有效的方法呢?答案是肯定的!接下来,就为大家分享一些能够帮助程序员快速提升技术的宝贵经验。夯实基础知识基础知识是技术大厦的基石,其重要性不言而喻。以编程语言为例,扎实掌握基本语法、数据类型、控制结构等基础知识,是灵活运用这门语言进行开发的前
- 基于Python的微博舆情分析与可视化系统【附源码】
AI博士小张
python数据分析数据库
基于Python的微博舆情分析与可视化系统摘要研究背景及意义一、数据流程总体架构二、详细处理流程与代码实现1.数据采集模块2.数据清洗与预处理3.情感分析与特征工程4.舆情分析模型5.可视化呈现三、性能优化要点摘要基于Python的微博舆情分析与可视化系统旨在利用大数据和自然语言处理技术,实时抓取、分析微博平台上的用户言论,并通过可视化手段揭示舆情的动态演变规律。系统采用Python技术栈,结合网
- 元数据存储与网络日志详解(小白版)
漠月瑾-西安
数据分析网络安全
元数据存储与网络日志详解(小白版)一、元数据存储:网络的「快递单管理系统」1.1核心概念元数据是描述数据特征的==结构化标签==,类似于:快递单(记录包裹重量、发件人,但不含包裹内的物品)照片属性(拍摄时间、GPS坐标*,但不含图像内容)图书馆索引卡(书名、ISBN号,但不含书中文字)*注:GPS坐标等元数据可能涉及位置隐私,需谨慎授权1.2工作原理系统通过协议
- 自我训练模型:通往未来的必经之路?
耶耶Norsea
网络杂烩人工智能
摘要在探讨是否唯有通过自我训练模型才能掌握未来的问题时,文章强调了底层技术的重要性。当前,许多人倾向于关注应用层的便捷性,却忽视了支撑这一切的根本——底层技术。将模型简单视为产品是一种短视行为,长远来看,理解并发展底层技术才是关键。只有全面把握从底层到应用层的技术链,才能真正引领未来的创新与发展。关键词自我训练模型,掌握未来,底层技术,应用层,模型产品一、技术层面的深入探讨1.1自我训练模型的技术
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本