小车立杆之DQN实现详解(PyTorch)

 前面的话

对于DQN的原理网上很多,故不再赘述,主要针对小车立杆这一场景的DQN实现代码进行详细说明,自我学习。

代码from莫烦老师.


完整代码

主要部分:

  1. 给出程序所需超参数;主要是与算法相关的参数
  2. 神经网络类;DQN中所使用的的神经网络
  3. DQN类;DQN算法的实现
  4. 主循环,训练过程
# -*- coding: utf-8 -*-
# @Time    : 2019/12/8 14:05
# @Author  : Chen
# @File    : DQN_CartPole.py
# @Software: PyCharm

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import gym

# Hyper Parameters
BATCH_SIZE = 32
LR = 0.01                   # learning rate
EPSILON = 0.9               # greedy policy
GAMMA = 0.9                 # reward discount
TARGET_REPLACE_ITER = 100   # target update frequency
MEMORY_CAPACITY = 2000
env = gym.make('CartPole-v0')   # 小车立杆
env = env.unwrapped
N_ACTIONS = env.action_space.n
N_STATES = env.observation_space.shape[0]
ENV_A_SHAPE = 0 if isinstance(env.action_space.sample(), int) else env.action_space.sample().shape     # to confirm the shape

# 定义神经网络
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 一个隐层,一个输出层
        self.fc1 = nn.Linear(N_STATES, 100)
        self.fc1.weight.data.normal_(0, 0.1)
        self.out = nn.Linear(100, N_ACTIONS)
        self.out.weight.data.normal_(0, 0.1)

    def forward(self, x):
        # Net的执行逻辑 Linear_fc1 --> relu --> out --> actions_value
        x = self.fc1(x)
        x = F.relu(x)
        actions_value = self.out(x)
        return actions_value


# 定义DQN模型
class DQN(object):
    def __init__(self):
        # 模型初始化。初始化main net和target net
        # 设置target更新计数器、存储计数器、记忆库初始化、优化器和loss定义。
        self.eval_net, self.target_net = Net(), Net()
        self.learn_step_counter = 0
        self.memory_counter = 0
        self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2))
        self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR)
        self.loss_func = nn.MSELoss()

    def choose_action(self, x):
        x = torch.unsqueeze(torch.FloatTensor(x), 0)
        if np.random.uniform() < EPSILON:
            actions_value = self.eval_net.forward(x)
            action = torch.max(actions_value, 1)[1].data.numpy()
            action = action[0] if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE)
        else:
            action = np.random.randint(0, N_ACTIONS)
            action = action if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE)
        return action

    def store_transition(self, s, a, r, s_):
        transition = np.hstack((s, [a, r], s_))
        index = self.memory_counter % MEMORY_CAPACITY
        self.memory[index,:] = transition
        self.memory_counter += 1

    def learn(self):
        if self.learn_step_counter % TARGET_REPLACE_ITER == 0:
            self.target_net.load_state_dict(self.eval_net.state_dict())
            print('target update....')
        self.learn_step_counter += 1

        sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)
        b_memory = self.memory[sample_index, :]
        b_s = torch.FloatTensor(b_memory[:, :N_STATES])
        b_a = torch.LongTensor(b_memory[:, N_STATES:N_STATES + 1].astype(int))
        b_r = torch.FloatTensor(b_memory[:, N_STATES + 1:N_STATES + 2])
        b_s_ = torch.FloatTensor(b_memory[:, -N_STATES:])

        # 计算q_target,loss,反向传递
        q_eval = self.eval_net(b_s).gather(1, b_a)
        q_next = self.target_net(b_s_).detach()
        q_target = b_r + GAMMA * q_next.max(1)[0].view(BATCH_SIZE, 1)
        loss = self.loss_func(q_eval, q_target)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

dqn = DQN()

    # training...
print('\nCollecting experience....')
for i_episode in range(400):
    s = env.reset()
    ep_r = 0

    while True:
        env.render()
        a = dqn.choose_action(s)

        s_, r, done, info = env.step(a)

        x, x_dot, theta, theta_dot = s_
        r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8
        r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
        r = r1 + r2

        dqn.store_transition(s, a, r, s_)

        ep_r += r
        print('memory_counter:', dqn.memory_counter)
        if dqn.memory_counter > MEMORY_CAPACITY:
            print('\nStart learning....', i_episode, '--')
            dqn.learn()
            if done:
                print('Ep:', i_episode, '| Ep_r:', round(ep_r, 2))

        if done:
            break
        s = s_



神经网络类

# 定义神经网络
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 一个隐层,一个输出层
        self.fc1 = nn.Linear(N_STATES, 100)
        self.fc1.weight.data.normal_(0, 0.1)
        self.out = nn.Linear(100, N_ACTIONS)
        self.out.weight.data.normal_(0, 0.1)

    def forward(self, x):
        # Net的执行逻辑 Linear_fc1 --> relu --> out --> actions_value
        x = self.fc1(x)
        x = F.relu(x)
        actions_value = self.out(x)
        return actions_value

继承Module,实现__init__,forward两个方法。init主要是定义Net结构,forward主要给出Net的执行逻辑即流程。

这里的网络十分简单,一个线形层和一个输出层。

 Net的执行逻辑: input state --> Linear_fc1 --> relu激活函数 --> out --> actions_value

输入为一个状态,通过神经网络后输出该状态下所有动作值。


DQN定义

class DQN(object):
    def __init__(self):
        # 模型初始化。初始化main net和target net
        # 设置target更新计数器、存储计数器、记忆库初始化、优化器和loss定义。
        self.eval_net, self.target_net = Net(), Net()
        self.learn_step_counter = 0
        self.memory_counter = 0
        self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2))
        self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR)
        self.loss_func = nn.MSELoss()

    def choose_action(self, x):
        x = torch.unsqueeze(torch.FloatTensor(x), 0)
        if np.random.uniform() < EPSILON:
            actions_value = self.eval_net.forward(x)
            action = torch.max(actions_value, 1)[1].data.numpy()
            action = action[0] if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE)
        else:
            action = np.random.randint(0, N_ACTIONS)
            action = action if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE)
        return action

    def store_transition(self, s, a, r, s_):
        transition = np.hstack((s, [a, r], s_))
        index = self.memory_counter % MEMORY_CAPACITY
        self.memory[index,:] = transition
        self.memory_counter += 1

    def learn(self):
        if self.learn_step_counter % TARGET_REPLACE_ITER == 0:
            self.target_net.load_state_dict(self.eval_net.state_dict())
            print('target update....')
        self.learn_step_counter += 1

        sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)
        b_memory = self.memory[sample_index, :]
        b_s = torch.FloatTensor(b_memory[:, :N_STATES])
        b_a = torch.LongTensor(b_memory[:, N_STATES:N_STATES + 1].astype(int))
        b_r = torch.FloatTensor(b_memory[:, N_STATES + 1:N_STATES + 2])
        b_s_ = torch.FloatTensor(b_memory[:, -N_STATES:])

        # 计算q_target,loss,反向传递
        q_eval = self.eval_net(b_s).gather(1, b_a)
        q_next = self.target_net(b_s_).detach()
        q_target = b_r + GAMMA * q_next.max(1)[0].view(BATCH_SIZE, 1)
        loss = self.loss_func(q_eval, q_target)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

 包括:__init__、choose_action、store_transition、learn四个方法的实现;


主循环

for i_episode in range(400):
    s = env.reset()
    ep_r = 0

    while True:
        env.render()
        a = dqn.choose_action(s)

        s_, r, done, info = env.step(a)

        x, x_dot, theta, theta_dot = s_
        r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8
        r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
        r = r1 + r2

        dqn.store_transition(s, a, r, s_)

        ep_r += r
        print('memory_counter:', dqn.memory_counter)
        if dqn.memory_counter > MEMORY_CAPACITY:
            print('\nStart learning....', i_episode, '--')
            dqn.learn()
            if done:
                print('Ep:', i_episode, '| Ep_r:', round(ep_r, 2))

        if done:
            break
        s = s_

设置进行400个episode,首先reset初始化环境对象env,ep_r为累计期望reward;

while循环:

  每次循环开始都重新生成图像,然后让dqn在状态s下选择动作,这里得到当前状态s下action值最大的动作,我们再在env环境中执行这一动作a,得到执行动作a后的下一个状态s_和奖赏reward;由于模拟的是小车立杆,所以状态中包含四个变量 x, x_dot, theta, theta_dot。这里莫烦对r进行了修正,然后将(s,a,r,s_)存储到记忆库中,并累计期望奖赏。

这里的两个if语句,第一个是要在dqn收集了一定量的经验后才开始学习;第二个是这一轮结束开始下一个episode;

否则就接着下一状态继续训练

你可能感兴趣的:(深度强化学习)