学习:mAP

添加链接描述
Mean Average Precision(MAP):平均精度均值

1.MAP可以由它的三个部分来理解:P,AP,MAP

P(Precision精度,正确率。在信息检索领域用的比较多,和正确率一块出现的是召回率Recall。对于一个查询,返回了一系列的文档,正确率指的是返回的结果中相关的文档占的比例,定义为:
precision=返回结果中相关文档的数目/返回结果的数目;
而召回率则是返回结果中相关文档占所有相关文档的比例,定义为:
Recall=返回结果中相关文档的数目/所有相关文档的数目。

学习:mAP_第1张图片

应用于图像识别:
有一个两类分类问题,分别5个样本,如果这个分类器性能达到完美的话,ranking结果应该是+1,+1,+1,+1,+1,-1,-1,-1,-1,-1.

但是分类器预测的label,和实际的score肯定不会这么完美。按照从大到小来打分,我们可以计算两个指标:precision和recall。比如分类器认为打分由高到低选择了前四个,实际上这里面只有两个是正样本。此时的recall就是2(你能包住的正样本数)/5(总共的正样本数)=0.4,precision是2(你选对了的)/4(总共选的)=0.5.

图像分类中,这个打分score可以由SVM得到:s=w^Tx+b就是每一个样本的分数

从上面的例子可以看出,其实precision,recall都是选多少个样本k的函数,很容易想到,如果我总共有1000个样本,那么我就可以像这样计算1000对P-R,并且把他们画出来,这就是PR曲线:

这里有一个趋势,recall越高,precision越低。这是很合理的,因为假如说我把1000个全拿进来,那肯定正样本都包住了,recall=1,但是此时precision就很小了,因为我全部认为他们是正样本。recall=1时的precision的数值,等于正样本所占的比例。

平均精度AP(average precision):就是PR曲线下的面积,这里average,等于是对recall取平均。而mean average precision的mean,是对所有类别取平均(每一个类当做一次二分类任务)。现在的图像分类论文基本都是用mAP作为标准。
AP是把准确率在recall值为Recall = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}时(总共11个rank水平上),求平均值:

AP = 1/11 ∑ recall∈{0,0.1,…,1} Precision(Recall)

均精度均值(mAP):只是把每个类别的AP都算了一遍,再取平均值:

mAP = AVG(AP for each object class)

因此,AP是针对单个类别的,mAP是针对所有类别的。

在图像识别具体应用方法如下:
学习:mAP_第2张图片

你可能感兴趣的:(程序人生,算法分析与优化)