python中arange的使用方法_Python numpy.arange() 使用实例

Example 1

def roll_zeropad(a, shift, axis=None):

a = np.asanyarray(a)

if shift == 0: return a

if axis is None:

n = a.size

reshape = True

else:

n = a.shape[axis]

reshape = False

if np.abs(shift) > n:

res = np.zeros_like(a)

elif shift < 0:

shift += n

zeros = np.zeros_like(a.take(np.arange(n-shift), axis))

res = np.concatenate((a.take(np.arange(n-shift,n), axis), zeros), axis)

else:

zeros = np.zeros_like(a.take(np.arange(n-shift,n), axis))

res = np.concatenate((zeros, a.take(np.arange(n-shift), axis)), axis)

if reshape:

return res.reshape(a.shape)

else:

return res

Example 2

def rhoA(self):

# rhoA

rhoA = pd.DataFrame(0, index=np.arange(1), columns=self.latent)

for i in range(self.lenlatent):

weights = pd.DataFrame(self.outer_weights[self.latent[i]])

weights = weights[(weights.T != 0).any()]

result = pd.DataFrame.dot(weights.T, weights)

result_ = pd.DataFrame.dot(weights, weights.T)

S = self.data_[self.Variables['measurement'][

self.Variables['latent'] == self.latent[i]]]

S = pd.DataFrame.dot(S.T, S) / S.shape[0]

numerador = (

np.dot(np.dot(weights.T, (S - np.diag(np.diag(S)))), weights))

denominador = (

(np.dot(np.dot(weights.T, (result_ - np.diag(np.diag(result_)))), weights)))

rhoA_ = ((result)**2) * (numerador / denominador)

if(np.isnan(rhoA_.values)):

rhoA[self.latent[i]] = 1

else:

rhoA[self.latent[i]] = rhoA_.values

return rhoA.T

Example 3

def plot_sent_trajectories(sents, decode_plot):

font = {'family' : 'normal',

'size' : 14}

matplotlib.rc('font', **font)

i = 0

l = ["Portuguese","Catalan"]

axes = plt.gca()

#axes.set_xlim([xmin,xmax])

axes.set_ylim([-1,1])

for sent, enc in zip(sents, decode_plot):

if i==2: continue

i += 1

#times = np.arange(len(enc))

times = np.linspace(0,1,len(enc))

plt.plot(times, enc, label=l[i-1])

plt.title("Hidden Node Trajectories")

plt.xlabel('timestep')

plt.ylabel('trajectories')

plt.legend(loc='best')

plt.savefig("final_tests/cr_por_cat_hidden_cell_trajectories", bbox_inches="tight")

plt.close()

Example 4

def _generate_data():

"""

?????

????u(k-1) ? y(k-1)?????y(k)

"""

# u = np.random.uniform(-1,1,200)

# y=[]

# former_y_value = 0

# for i in np.arange(0,200):

# y.append(former_y_value)

# next_y_value = (29.0 / 40) * np.sin(

# (16.0 * u[i] + 8 * former_y_value) / (3.0 + 4.0 * (u[i] ** 2) + 4 * (former_y_value ** 2))) \

# + (2.0 / 10) * u[i] + (2.0 / 10) * former_y_value

# former_y_value = next_y_value

# return u,y

u1 = np.random.uniform(-np.pi,np.pi,200)

u2 = np.random.uniform(-1,1,200)

y = np.zeros(200)

for i in range(200):

value = np.sin(u1[i]) + u2[i]

y[i] = value

return u1, u2, y

Example 5

def plot_counts(counts, gene_type):

"""Plot expression counts. Return a Figure object"""

import matplotlib

matplotlib.use('agg')

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

fig = plt.figure(figsize=((50 + len(counts) * 5) / 25.4, 210/25.4))

matplotlib.rcParams.update({'font.size': 14})

ax = fig.gca()

ax.set_title('{} gene usage'.format(gene_type))

ax.set_xlabel('{} gene'.format(gene_type))

ax.set_ylabel('Count')

ax.set_xticks(np.arange(len(counts)) + 0.5)

ax.set_xticklabels(counts.index, rotation='vertical')

ax.grid(axis='x')

ax.set_xlim((-0.25, len(counts)))

ax.bar(np.arange(len(counts)), counts['count'])

fig.set_tight_layout(True)

return fig

Example 6

def _create_figure(predictions_dict):

"""Creates and returns a new figure that visualizes

attention scores for for a single model predictions.

"""

# Find out how long the predicted sequence is

target_words = list(predictions_dict["predicted_tokens"])

prediction_len = _get_prediction_length(predictions_dict)

# Get source words

source_len = predictions_dict["features.source_len"]

source_words = predictions_dict["features.source_tokens"][:source_len]

# Plot

fig = plt.figure(figsize=(8, 8))

plt.imshow(

X=predictions_dict["attention_scores"][:prediction_len, :source_len],

interpolation="nearest",

cmap=plt.cm.Blues)

plt.xticks(np.arange(source_len), source_words, rotation=45)

plt.yticks(np.arange(prediction_len), target_words, rotation=-45)

fig.tight_layout()

return fig

Example 7

def mypsd(Rates,time_range,bin_w = 5., nmax = 4000):

bins = np.arange(0,len(time_range),1)

#print bins

a,b = np.histogram(Rates, bins)

ff = (1./len(bins))*abs(np.fft.fft(Rates- np.mean(Rates)))**2

Fs = 1./(1*0.001)

freq2 = np.fft.fftfreq(len(bins))[0:len(bins/2)+1] # d= dt

freq = np.fft.fftfreq(len(bins))[:len(ff)/2+1]

px = ff[0:len(ff)/2+1]

max_px = np.max(px[1:])

idx = px == max_px

corr_freq = freq[pl.find(idx)]

new_px = px

max_pow = new_px[pl.find(idx)]

return new_px,freq,corr_freq[0],freq2, max_pow

Example 8

def remove_artifacts(self, image):

"""

Remove the connected components that are not within the parameters

Operates in place

:param image: sudoku's thresholded image w/o grid

:return: None

"""

labeled, features = label(image, structure=CROSS)

lbls = np.arange(1, features + 1)

areas = extract_feature(image, labeled, lbls, np.sum,

np.uint32, 0)

sides = extract_feature(image, labeled, lbls, min_side,

np.float32, 0, True)

diags = extract_feature(image, labeled, lbls, diagonal,

np.float32, 0, True)

for index in lbls:

area = areas[index - 1] / 255

side = sides[index - 1]

diag = diags[index - 1]

if side < 5 or side > 20 \

or diag < 15 or diag > 25 \

or area < 40:

image[labeled == index] = 0

return None

Example 9

def remove_artifacts(self, image):

"""

Remove the connected components that are not within the parameters

Operates in place

:param image: sudoku's thresholded image w/o grid

:return: None

"""

labeled, features = label(image, structure=CROSS)

lbls = np.arange(1, features + 1)

areas = extract_feature(image, labeled, lbls, np.sum,

np.uint32, 0)

sides = extract_feature(image, labeled, lbls, min_side,

np.float32, 0, True)

diags = extract_feature(image, labeled, lbls, diagonal,

np.float32, 0, True)

for index in lbls:

area = areas[index - 1] / 255

side = sides[index - 1]

diag = diags[index - 1]

if side < 5 or side > 20 \

or diag < 15 or diag > 25 \

or area < 40:

image[labeled == index] = 0

return None

Example 10

def next_batch(self, batch_size, fake_data=False):

"""Return the next `batch_size` examples from this data set."""

if fake_data:

fake_image = [1.0 for _ in xrange(784)]

fake_label = 0

return [fake_image for _ in xrange(batch_size)], [

fake_label for _ in xrange(batch_size)]

start = self._index_in_epoch

self._index_in_epoch += batch_size

if self._index_in_epoch > self._num_examples:

# Finished epoch

self._epochs_completed += 1

# Shuffle the data

perm = numpy.arange(self._num_examples)

numpy.random.shuffle(perm)

self._images = self._images[perm]

self._labels = self._labels[perm]

# Start next epoch

start = 0

self._index_in_epoch = batch_size

assert batch_size <= self._num_examples

end = self._index_in_epoch

return self._images[start:end], self._labels[start:end]

Example 11

def next_batch(self, batch_size, fake_data=False):

"""Return the next `batch_size` examples from this data set."""

if fake_data:

fake_image = [1.0 for _ in xrange(784)]

fake_label = 0

return [fake_image for _ in xrange(batch_size)], [

fake_label for _ in xrange(batch_size)]

start = self._index_in_epoch

self._index_in_epoch += batch_size

if self._index_in_epoch > self._num_examples:

# Finished epoch

self._epochs_completed += 1

# Shuffle the data

perm = numpy.arange(self._num_examples)

numpy.random.shuffle(perm)

self._images = self._images[perm]

self._labels = self._labels[perm]

# Start next epoch

start = 0

self._index_in_epoch = batch_size

assert batch_size <= self._num_examples

end = self._index_in_epoch

return self._images[start:end], self._labels[start:end]

Example 12

def split_dataset(dataset, split_ratio, mode):

if mode=='SPLIT_CLASSES':

nrof_classes = len(dataset)

class_indices = np.arange(nrof_classes)

np.random.shuffle(class_indices)

split = int(round(nrof_classes*split_ratio))

train_set = [dataset[i] for i in class_indices[0:split]]

test_set = [dataset[i] for i in class_indices[split:-1]]

elif mode=='SPLIT_IMAGES':

train_set = []

test_set = []

min_nrof_images = 2

for cls in dataset:

paths = cls.image_paths

np.random.shuffle(paths)

split = int(round(len(paths)*split_ratio))

if split

continue # Not enough images for test set. Skip class...

train_set.append(ImageClass(cls.name, paths[0:split]))

test_set.append(ImageClass(cls.name, paths[split:-1]))

else:

raise ValueError('Invalid train/test split mode "%s"' % mode)

return train_set, test_set

Example 13

def quantize_from_probs2(probs, resolution):

"""Quantize multiple non-normalized probs to given resolution.

Args:

probs: An [N, M]-shaped numpy array of non-normalized probabilities.

Returns:

An [N, M]-shaped array of quantized probabilities such that

np.all(result.sum(axis=1) == resolution).

"""

assert len(probs.shape) == 2

N, M = probs.shape

probs = probs / probs.sum(axis=1, keepdims=True)

result = np.zeros(probs.shape, np.int8)

range_N = np.arange(N, dtype=np.int32)

for _ in range(resolution):

sample = probs.argmax(axis=1)

result[range_N, sample] += 1

probs[range_N, sample] -= 1.0 / resolution

return result

Example 14

def get_train_data():

# definite the dataset as two input , one output

DS = SupervisedDataSet(2, 1)

u1, u2, y = _generate_data()

# add data element to the dataset

for i in np.arange(199):

DS.addSample([u1[i], u2[i]], [y[i + 1]])

# you can get your input/output this way

# X = DS['input']

# Y = DS['target']

# split the dataset into train dataset and test dataset

dataTrain, dataTest = DS.splitWithProportion(0.8)

return dataTrain, dataTest

Example 15

def read_chunk(self, idx, chunk_size, padding=(0, 0), nodes=None):

self._open()

t_start, t_stop = self._get_t_start_t_stop(idx, chunk_size, padding)

if self.time_axis == 0:

local_chunk = self.data[t_start:t_stop, :]

elif self.time_axis == 1:

local_chunk = self.data[:, t_start:t_stop].T

self._close()

if nodes is not None:

if not numpy.all(nodes == numpy.arange(self.nb_channels)):

local_chunk = numpy.take(local_chunk, nodes, axis=1)

return self._scale_data_to_float32(local_chunk)

Example 16

def _get_slice_(self, t_start, t_stop):

x_beg = numpy.int64(t_start // self.SAMPLES_PER_RECORD)

r_beg = numpy.mod(t_start, self.SAMPLES_PER_RECORD)

x_end = numpy.int64(t_stop // self.SAMPLES_PER_RECORD)

r_end = numpy.mod(t_stop, self.SAMPLES_PER_RECORD)

if x_beg == x_end:

g_offset = x_beg * self.bytes_per_block_div + self.block_offset_div

data_slice = numpy.arange(g_offset + r_beg * self.nb_channels, g_offset + r_end * self.nb_channels, dtype=numpy.int64)

yield data_slice

else:

for count, nb_blocks in enumerate(numpy.arange(x_beg, x_end + 1, dtype=numpy.int64)):

g_offset = nb_blocks * self.bytes_per_block_div + self.block_offset_div

if count == 0:

data_slice = numpy.arange(g_offset + r_beg * self.nb_channels, g_offset + self.block_size_div, dtype=numpy.int64)

elif (count == (x_end - x_beg)):

data_slice = numpy.arange(g_offset, g_offset + r_end * self.nb_channels, dtype=numpy.int64)

else:

data_slice = numpy.arange(g_offset, g_offset + self.block_size_div, dtype=numpy.int64)

yield data_slice

Example 17

def _get_slice_(self, t_start, t_stop):

x_beg = numpy.int64(t_start // self.SAMPLES_PER_RECORD)

r_beg = numpy.mod(t_start, self.SAMPLES_PER_RECORD)

x_end = numpy.int64(t_stop // self.SAMPLES_PER_RECORD)

r_end = numpy.mod(t_stop, self.SAMPLES_PER_RECORD)

data_slice = []

if x_beg == x_end:

g_offset = x_beg * self.SAMPLES_PER_RECORD + self.OFFSET_PER_BLOCK[0]*(x_beg + 1) + self.OFFSET_PER_BLOCK[1]*x_beg

data_slice = numpy.arange(g_offset + r_beg, g_offset + r_end, dtype=numpy.int64)

else:

for count, nb_blocks in enumerate(numpy.arange(x_beg, x_end + 1, dtype=numpy.int64)):

g_offset = nb_blocks * self.SAMPLES_PER_RECORD + self.OFFSET_PER_BLOCK[0]*(nb_blocks + 1) + self.OFFSET_PER_BLOCK[1]*nb_blocks

if count == 0:

data_slice += numpy.arange(g_offset + r_beg, g_offset + self.SAMPLES_PER_RECORD, dtype=numpy.int64).tolist()

elif (count == (x_end - x_beg)):

data_slice += numpy.arange(g_offset, g_offset + r_end, dtype=numpy.int64).tolist()

else:

data_slice += numpy.arange(g_offset, g_offset + self.SAMPLES_PER_RECORD, dtype=numpy.int64).tolist()

return data_slice

Example 18

def read_chunk(self, idx, chunk_size, padding=(0, 0), nodes=None):

t_start, t_stop = self._get_t_start_t_stop(idx, chunk_size, padding)

local_shape = t_stop - t_start

if nodes is None:

nodes = numpy.arange(self.nb_channels)

local_chunk = numpy.zeros((local_shape, len(nodes)), dtype=self.data_dtype)

data_slice = self._get_slice_(t_start, t_stop)

self._open()

for count, i in enumerate(nodes):

local_chunk[:, count] = self.data[i][data_slice]

self._close()

return self._scale_data_to_float32(local_chunk)

Example 19

def _get_slice_(self, t_start, t_stop):

x_beg = numpy.int64(t_start // self.SAMPLES_PER_RECORD)

r_beg = numpy.mod(t_start, self.SAMPLES_PER_RECORD)

x_end = numpy.int64(t_stop // self.SAMPLES_PER_RECORD)

r_end = numpy.mod(t_stop, self.SAMPLES_PER_RECORD)

data_slice = []

if x_beg == x_end:

g_offset = x_beg * self.SAMPLES_PER_RECORD + self.OFFSET_PER_BLOCK[0]*(x_beg + 1) + self.OFFSET_PER_BLOCK[1]*x_beg

data_slice = numpy.arange(g_offset + r_beg, g_offset + r_end, dtype=numpy.int64)

else:

for count, nb_blocks in enumerate(numpy.arange(x_beg, x_end + 1, dtype=numpy.int64)):

g_offset = nb_blocks * self.SAMPLES_PER_RECORD + self.OFFSET_PER_BLOCK[0]*(nb_blocks + 1) + self.OFFSET_PER_BLOCK[1]*nb_blocks

if count == 0:

data_slice += numpy.arange(g_offset + r_beg, g_offset + self.SAMPLES_PER_RECORD, dtype=numpy.int64).tolist()

elif (count == (x_end - x_beg)):

data_slice += numpy.arange(g_offset, g_offset + r_end, dtype=numpy.int64).tolist()

else:

data_slice += numpy.arange(g_offset, g_offset + self.SAMPLES_PER_RECORD, dtype=numpy.int64).tolist()

return data_slice

Example 20

def read_chunk(self, idx, chunk_size, padding=(0, 0), nodes=None):

t_start, t_stop = self._get_t_start_t_stop(idx, chunk_size, padding)

local_shape = t_stop - t_start

if nodes is None:

nodes = numpy.arange(self.nb_channels)

local_chunk = numpy.zeros((local_shape, len(nodes)), dtype=self.data_dtype)

data_slice = self._get_slice_(t_start, t_stop)

self._open()

for count, i in enumerate(nodes):

local_chunk[:, count] = self.data[i][data_slice]

self._close()

return self._scale_data_to_float32(local_chunk)

Example 21

def view_trigger_snippets_bis(trigger_snippets, elec_index, save=None):

fig = pylab.figure()

ax = fig.add_subplot(1, 1, 1)

for n in xrange(0, trigger_snippets.shape[2]):

y = trigger_snippets[:, elec_index, n]

x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)

b = 0.5 + 0.5 * numpy.random.rand()

ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')

ax.grid(True)

ax.set_xlim([numpy.amin(x), numpy.amax(x)])

ax.set_xlabel("time")

ax.set_ylabel("amplitude")

if save is None:

pylab.show()

else:

pylab.savefig(save)

pylab.close(fig)

return

Example 22

def cost(self, x):

Rdx = dl.Vector()

self.Prior.init_vector(Rdx,0)

dx = x[PARAMETER] - self.Prior.mean

self.Prior.R.mult(dx, Rdx)

reg = .5*Rdx.inner(dx)

u = dl.Vector()

ud = dl.Vector()

self.Q.init_vector(u,0)

self.Q.init_vector(ud,0)

misfit = 0

for t in np.arange(self.t_1, self.t_final+(.5*self.dt), self.dt):

x[STATE].retrieve(u,t)

self.ud.retrieve(ud,t)

diff = u - ud

Qdiff = self.Q * diff

misfit += .5/self.noise_variance*Qdiff.inner(diff)

c = misfit + reg

return [c, reg, misfit]

Example 23

def _flow_index(self, n, batch_size=32, shuffle=False, seed=None):

# ensure self.batch_index is 0

self.reset()

while 1:

if seed is not None:

np.random.seed(seed + self.total_batches_seen)

if self.batch_index == 0:

index_array = np.arange(n)

if shuffle:

index_array = np.random.permutation(n)

current_index = (self.batch_index * batch_size) % n

if n >= current_index + batch_size:

current_batch_size = batch_size

self.batch_index += 1

else:

current_batch_size = n - current_index

self.batch_index = 0

self.total_batches_seen += 1

yield (index_array[current_index: current_index + current_batch_size],

current_index, current_batch_size)

Example 24

def make_split(X_full, Y_full, split):

N = X_full.shape[0]

n = int(N * PROPORTION_TRAIN)

ind = np.arange(N)

np.random.seed(split + SEED)

np.random.shuffle(ind)

train_ind = ind[:n]

test_ind= ind[n:]

X = X_full[train_ind]

Xs = X_full[test_ind]

Y = Y_full[train_ind]

Ys = Y_full[test_ind]

return X, Y, Xs, Ys

Example 25

def plot_difference_histogram(group, gene_name, bins=np.arange(20.1)):

"""

Plot a histogram of percentage differences for a specific gene.

"""

exact_matches = group[group.V_SHM == 0]

CDR3s_exact = len(set(s for s in exact_matches.CDR3_nt if s))

Js_exact = len(set(exact_matches.J_gene))

fig = Figure(figsize=(100/25.4, 60/25.4))

ax = fig.gca()

ax.set_xlabel('Percentage difference')

ax.set_ylabel('Frequency')

fig.suptitle('Gene ' + gene_name, y=1.08, fontsize=16)

ax.set_title('{:,} sequences assigned'.format(len(group)))

ax.text(0.25, 0.95,

'{:,} ({:.1%}) exact matches\n {} unique CDR3\n {} unique J'.format(

len(exact_matches), len(exact_matches) / len(group),

CDR3s_exact, Js_exact),

transform=ax.transAxes, fontsize=10,

bbox=dict(boxstyle='round', facecolor='white', alpha=0.5),

horizontalalignment='left', verticalalignment='top')

_ = ax.hist(list(group.V_SHM), bins=bins)

return fig

Example 26

def create_decoder(self, helper, mode):

attention_fn = AttentionLayerDot(

params={"num_units": self.attention_dim},

mode=tf.contrib.learn.ModeKeys.TRAIN)

attention_values = tf.convert_to_tensor(

np.random.randn(self.batch_size, self.input_seq_len, 32),

dtype=tf.float32)

attention_keys = tf.convert_to_tensor(

np.random.randn(self.batch_size, self.input_seq_len, 32),

dtype=tf.float32)

params = AttentionDecoder.default_params()

params["max_decode_length"] = self.max_decode_length

return AttentionDecoder(

params=params,

mode=mode,

vocab_size=self.vocab_size,

attention_keys=attention_keys,

attention_values=attention_values,

attention_values_length=np.arange(self.batch_size) + 1,

attention_fn=attention_fn)

Example 27

def make_copy(num_examples, min_len, max_len):

"""

Generates a dataset where the target is equal to the source.

Sequence lengths are chosen randomly from [min_len, max_len].

Args:

num_examples: Number of examples to generate

min_len: Minimum sequence length

max_len: Maximum sequence length

Returns:

An iterator of (source, target) string tuples.

"""

for _ in range(num_examples):

turn_length = np.random.choice(np.arange(min_len, max_len + 1))

source_tokens = np.random.choice(

list(VOCABULARY), size=turn_length, replace=True)

target_tokens = source_tokens

yield " ".join(source_tokens), " ".join(target_tokens)

Example 28

def make_reverse(num_examples, min_len, max_len):

"""

Generates a dataset where the target is equal to the source reversed.

Sequence lengths are chosen randomly from [min_len, max_len].

Args:

num_examples: Number of examples to generate

min_len: Minimum sequence length

max_len: Maximum sequence length

Returns:

An iterator of (source, target) string tuples.

"""

for _ in range(num_examples):

turn_length = np.random.choice(np.arange(min_len, max_len + 1))

source_tokens = np.random.choice(

list(VOCABULARY), size=turn_length, replace=True)

target_tokens = source_tokens[::-1]

yield " ".join(source_tokens), " ".join(target_tokens)

Example 29

def update_dividends(self, new_dividends):

"""

Update our dividend frame with new dividends. @new_dividends should be

a DataFrame with columns containing at least the entries in

zipline.protocol.DIVIDEND_FIELDS.

"""

# Mark each new dividend with a unique integer id. This ensures that

# we can differentiate dividends whose date/sid fields are otherwise

# identical.

new_dividends['id'] = np.arange(

self._dividend_count,

self._dividend_count + len(new_dividends),

)

self._dividend_count += len(new_dividends)

self.dividend_frame = sort_values(pd.concat(

[self.dividend_frame, new_dividends]

), ['pay_date', 'ex_date']).set_index('id', drop=False)

Example 30

def create_test_panel_ohlc_source(sim_params, env):

start = sim_params.first_open \

if sim_params else pd.datetime(1990, 1, 3, 0, 0, 0, 0, pytz.utc)

end = sim_params.last_close \

if sim_params else pd.datetime(1990, 1, 8, 0, 0, 0, 0, pytz.utc)

index = env.days_in_range(start, end)

price = np.arange(0, len(index)) + 100

high = price * 1.05

low = price * 0.95

open_ = price + .1 * (price % 2 - .5)

volume = np.ones(len(index)) * 1000

arbitrary = np.ones(len(index))

df = pd.DataFrame({'price': price,

'high': high,

'low': low,

'open': open_,

'volume': volume,

'arbitrary': arbitrary},

index=index)

panel = pd.Panel.from_dict({0: df})

return DataPanelSource(panel), panel

Example 31

def test_expect_dtypes_with_tuple(self):

allowed_dtypes = (dtype('datetime64[ns]'), dtype('float'))

@expect_dtypes(a=allowed_dtypes)

def foo(a, b):

return a, b

for d in allowed_dtypes:

good_a = arange(3).astype(d)

good_b = object()

ret_a, ret_b = foo(good_a, good_b)

self.assertIs(good_a, ret_a)

self.assertIs(good_b, ret_b)

with self.assertRaises(TypeError) as e:

foo(arange(3, dtype='uint32'), object())

expected_message = (

"{qualname}() expected a value with dtype 'datetime64[ns]' "

"or 'float64' for argument 'a', but got 'uint32' instead."

).format(qualname=qualname(foo))

self.assertEqual(e.exception.args[0], expected_message)

Example 32

def test_bad_input(self):

data = arange(100).reshape(self.ndates, self.nsids)

baseline = DataFrame(data, index=self.dates, columns=self.sids)

loader = DataFrameLoader(

USEquityPricing.close,

baseline,

)

with self.assertRaises(ValueError):

# Wrong column.

loader.load_adjusted_array(

[USEquityPricing.open], self.dates, self.sids, self.mask

)

with self.assertRaises(ValueError):

# Too many columns.

loader.load_adjusted_array(

[USEquityPricing.open, USEquityPricing.close],

self.dates,

self.sids,

self.mask,

)

Example 33

def test_baseline(self):

data = arange(100).reshape(self.ndates, self.nsids)

baseline = DataFrame(data, index=self.dates, columns=self.sids)

loader = DataFrameLoader(USEquityPricing.close, baseline)

dates_slice = slice(None, 10, None)

sids_slice = slice(1, 3, None)

[adj_array] = loader.load_adjusted_array(

[USEquityPricing.close],

self.dates[dates_slice],

self.sids[sids_slice],

self.mask[dates_slice, sids_slice],

).values()

for idx, window in enumerate(adj_array.traverse(window_length=3)):

expected = baseline.values[dates_slice, sids_slice][idx:idx + 3]

assert_array_equal(window, expected)

Example 34

def get_normalized_dispersion(mat_mean, mat_var, nbins=20):

mat_disp = (mat_var - mat_mean) / np.square(mat_mean)

quantiles = np.percentile(mat_mean, np.arange(0, 100, 100 / nbins))

quantiles = np.append(quantiles, mat_mean.max())

# merge bins with no difference in value

quantiles = np.unique(quantiles)

if len(quantiles) <= 1:

# pathological case: the means are all identical. just return raw dispersion.

return mat_disp

# calc median dispersion per bin

(disp_meds, _, disp_bins) = scipy.stats.binned_statistic(mat_mean, mat_disp, statistic='median', bins=quantiles)

# calc median absolute deviation of dispersion per bin

disp_meds_arr = disp_meds[disp_bins-1] # 0th bin is empty since our quantiles start from 0

disp_abs_dev = abs(mat_disp - disp_meds_arr)

(disp_mads, _, disp_bins) = scipy.stats.binned_statistic(mat_mean, disp_abs_dev, statistic='median', bins=quantiles)

# calculate normalized dispersion

disp_mads_arr = disp_mads[disp_bins-1]

disp_norm = (mat_disp - disp_meds_arr) / disp_mads_arr

return disp_norm

Example 35

def compute_nearest_neighbors(submatrix, balltree, k, row_start):

""" Compute k nearest neighbors on a submatrix

Args: submatrix (np.ndarray): Data submatrix

balltree: Nearest neighbor index (from sklearn)

k: number of nearest neigbors to compute

row_start: row offset into larger matrix

Returns a COO sparse adjacency matrix of nearest neighbor relations as (i,j,x)"""

nn_dist, nn_idx = balltree.query(submatrix, k=k+1)

# Remove the self-as-neighbors

nn_idx = nn_idx[:,1:]

nn_dist = nn_dist[:,1:]

# Construct a COO sparse matrix of edges and distances

i = np.repeat(row_start + np.arange(nn_idx.shape[0]), k)

j = nn_idx.ravel().astype(int)

return (i, j, nn_dist.ravel())

Example 36

def preprocess_matrix(matrix, num_bcs=None, use_bcs=None, use_genes=None, force_cells=None):

if force_cells is not None:

bc_counts = matrix.get_reads_per_bc()

bc_indices, _, _ = cr_stats.filter_cellular_barcodes_fixed_cutoff(bc_counts, force_cells)

matrix = matrix.select_barcodes(bc_indices)

elif use_bcs is not None:

bc_seqs = cr_utils.load_csv_rownames(use_bcs)

bc_indices = matrix.bcs_to_ints(bc_seqs)

matrix = matrix.select_barcodes(bc_indices)

elif num_bcs is not None and num_bcs < matrix.bcs_dim:

bc_indices = np.sort(np.random.choice(np.arange(matrix.bcs_dim), size=num_bcs, replace=False))

matrix = matrix.select_barcodes(bc_indices)

if use_genes is not None:

gene_ids = cr_utils.load_csv_rownames(use_genes)

gene_indices = matrix.gene_ids_to_ints(gene_ids)

matrix = matrix.select_genes(gene_indices)

matrix, _, _ = matrix.select_nonzero_axes()

return matrix

Example 37

def get_depth_info(read_iter, chrom, cstart, cend):

depths = np.zeros(cend-cstart, np.int32)

for read in read_iter:

pos = read.pos

rstart = max(pos, cstart)

# Increment to the end of the window or the end of the

# alignment, whichever comes first

rend = min(read.aend, cend)

depths[(rstart-cstart):(rend-cstart)] += 1

positions = np.arange(cstart, cend, dtype=np.int32)

depth_df = pd.DataFrame({"chrom": chrom, "pos": positions, "coverage": depths})

return depth_df

Example 38

def getDataRecorderConfiguration(self):

nRecorders= self.getNumberOfRecorderTables()

sourceBufSize= 256

source= ctypes.create_string_buffer('\000', sourceBufSize)

option= CIntArray(np.zeros(nRecorders, dtype=np.int32))

table=CIntArray(np.arange(1, nRecorders + 1))

self._lib.PI_qDRC.argtypes= [c_int, CIntArray, c_char_p,

CIntArray, c_int, c_int]

self._convertErrorToException(

self._lib.PI_qDRC(self._id, table, source,

option, sourceBufSize, nRecorders))

sources= [x.strip() for x in source.value.split('\n')]

cfg= DataRecorderConfiguration()

for i in range(nRecorders):

cfg.setTable(table.toNumpyArray()[i],

sources[i],

option.toNumpyArray()[i])

return cfg

Example 39

def loadLogoSet(path, rows,cols,test_data_rate=0.15):

random.seed(612)

_, imgID = readItems('data.txt')

y, _ = modelDict(path)

nPics = len(y)

faceassset = np.zeros((nPics,rows,cols), dtype = np.uint8) ### gray images

noImg = []

for i in range(nPics):

temp = cv2.imread(path +'logo/'+imgID[i]+'.jpg', 0)

if temp == None:

noImg.append(i)

elif temp.size < 1000:

noImg.append(i)

else:

temp = cv2.resize(temp,(cols, rows), interpolation = cv2.INTER_CUBIC)

faceassset[i,:,:] = temp

y = np.delete(y, noImg,0); faceassset = np.delete(faceassset, noImg, 0)

nPics = len(y)

index = random.sample(np.arange(nPics), int(nPics*test_data_rate))

x_test = faceassset[index,:,:]; x_train = np.delete(faceassset, index, 0)

y_test = y[index]; y_train = np.delete(y, index, 0)

return (x_train, y_train), (x_test, y_test)

Example 40

def batch_iter(data, batch_size, num_epochs, shuffle=True):

"""

Generates a batch iterator for a dataset.

"""

data = np.array(data)

data_size = len(data)

num_batches_per_epoch = int(len(data)/batch_size) + 1

for epoch in range(num_epochs):

# Shuffle the data at each epoch

if shuffle:

shuffle_indices = np.random.permutation(np.arange(data_size))

shuffled_data = data[shuffle_indices]

else:

shuffled_data = data

for batch_num in range(num_batches_per_epoch):

start_index = batch_num * batch_size

end_index = min((batch_num + 1) * batch_size, data_size)

yield shuffled_data[start_index:end_index]

Example 41

def _gen_centroids():

a = np.arange(SSIZE/18, SSIZE, SSIZE/9)

x, y = np.meshgrid(a, a)

return np.dstack((y, x)).reshape((81, 2))

Example 42

def classify(self, image):

"""

Given a 28x28 image, returns an array representing the 2 highest

probable prediction

:param image:

:return: array of 2 highest prob-digit tuples

"""

if cv2.__version__[0] == '2':

res = self.model.find_nearest(np.array([self.feature(image)]), k=11)

else:

res = self.model.findNearest(np.array([self.feature(image)]), k=11)

hist = np.histogram(res[2], bins=9, range=(1, 10), normed=True)[0]

zipped = sorted(zip(hist, np.arange(1, 10)), reverse=True)

return np.array(zipped[:2])

Example 43

def blend2(x1,x2,y, metric, task, x1valid, x2valid, x1test, x2test):

try:

mm = no_transform()

mbest_score = -2

for w1 in np.arange(0.2, 1, 0.1):

w2 = 1- w1

x = mm.fit_transform(x1)*w1 + mm.fit_transform(x2)*w2

exec('score = libscores.'+ metric + '(y, x, "' + task + '")')

try:

if score <= 0:

exec('CVscore_auc = libscores.auc_metric(y, x, "' + task + '")')

score += CVscore_auc/10

except:

pass

if score > mbest_score:

mbest_score = score

mbest_w1 = w1

mbest_x = x

mbest_w2 = 1- mbest_w1

xvalid = mm.fit_transform(x1valid) * mbest_w1 + mm.fit_transform(x2valid)* mbest_w2

xtest = mm.fit_transform(x1test) * mbest_w1 + mm.fit_transform(x2test) * mbest_w2

return mbest_score, xvalid, xtest

except:

return 0.01, x1valid, x1test

Example 44

def blend3(x1,x2, x3, y, metric, task, x1valid, x2valid, x3valid, x1test, x2test, x3test):

try:

mm = no_transform()

mbest_score = -2

for w1 in np.arange(0.2, 1, 0.2):

for w2 in np.arange(0.1, 0.6, 0.2):

w3 = 1- w1 - w2

if w3 > 0:

x = mm.fit_transform(x1)*w1 + mm.fit_transform(x2)*w2 + mm.fit_transform(x3)*w3

exec('score = libscores.'+ metric + '(y, x, "' + task + '")')

try:

if score <= 0:

exec('CVscore_auc = libscores.auc_metric(y, x, "' + task + '")')

score += CVscore_auc/10

except:

pass

if score > mbest_score:

mbest_score = score

mbest_w1 = w1

mbest_w2 = w2

mbest_w3 = 1- mbest_w1- mbest_w2

xvalid = mm.fit_transform(x1valid) * mbest_w1 + mm.fit_transform(x2valid)* mbest_w2 + mm.fit_transform(x3valid)* mbest_w3

xtest = mm.fit_transform(x1test) * mbest_w1 + mm.fit_transform(x2test) * mbest_w2 + mm.fit_transform(x3test) * mbest_w3

return mbest_score, xvalid, xtest

except:

return 0.01, x1valid, x1test

Example 45

def tiedrank(a):

''' Return the ranks (with base 1) of a list resolving ties by averaging.

This works for numpy arrays.'''

m=len(a)

# Sort a in ascending order (sa=sorted vals, i=indices)

i=a.argsort()

sa=a[i]

# Find unique values

uval=np.unique(a)

# Test whether there are ties

R=np.arange(m, dtype=float)+1 # Ranks with base 1

if len(uval)!=m:

# Average the ranks for the ties

oldval=sa[0]

newval=sa[0]

k0=0

for k in range(1,m):

newval=sa[k]

if newval==oldval:

# moving average

R[k0:k+1]=R[k-1]*(k-k0)/(k-k0+1)+R[k]/(k-k0+1)

else:

k0=k;

oldval=newval

# Invert the index

S=np.empty(m)

S[i]=R

return S

Example 46

def plot_trajectories(src_sent, src_encoding, idx):

# encoding is (time_steps, hidden_dim)

#pca = PCA(n_components=1)

#pca_result = pca.fit_transform(src_encoding)

times = np.arange(src_encoding.shape[0])

plt.plot(times, src_encoding)

plt.title(" ".join(src_sent))

plt.xlabel('timestep')

plt.ylabel('trajectories')

plt.savefig("misc_hidden_cell_trajectories_"+str(idx), bbox_inches="tight")

plt.close()

Example 47

def dense_to_one_hot(labels_dense, num_classes=10):

"""Convert class labels from scalars to one-hot vectors."""

num_labels = labels_dense.shape[0]

index_offset = numpy.arange(num_labels) * num_classes

labels_one_hot = numpy.zeros((num_labels, num_classes))

labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1

return labels_one_hot

Example 48

def dense_to_one_hot(labels_dense, num_classes=10):

"""Convert class labels from scalars to one-hot vectors."""

num_labels = labels_dense.shape[0]

index_offset = numpy.arange(num_labels) * num_classes

labels_one_hot = numpy.zeros((num_labels, num_classes))

labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1

return labels_one_hot

Example 49

def iterate_minibatches(inputs, targets, batchsize, shuffle=False, augment=False):

assert len(inputs) == len(targets)

if shuffle:

indices = np.arange(len(inputs))

np.random.shuffle(indices)

for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):

if shuffle:

excerpt = indices[start_idx:start_idx + batchsize]

else:

excerpt = slice(start_idx, start_idx + batchsize)

if augment:

# as in paper :

# pad feature arrays with 4 pixels on each side

# and do random cropping of 32x32

padded = np.pad(inputs[excerpt],((0,0),(0,0),(4,4),(4,4)),mode='constant')

random_cropped = np.zeros(inputs[excerpt].shape, dtype=np.float32)

crops = np.random.random_integers(0,high=8,size=(batchsize,2))

for r in range(batchsize):

random_cropped[r,:,:,:] = padded[r,:,crops[r,0]:(crops[r,0]+32),crops[r,1]:(crops[r,1]+32)]

inp_exc = random_cropped

else:

inp_exc = inputs[excerpt]

yield inp_exc, targets[excerpt]

# ############################## Main program ################################

Example 50

def __init__(self, env):

self.env = env

if isinstance(env.observation_space, Discrete):

self.state_size = 1

else:

self.state_size = numel(env.observation_space.shape)

if isinstance(self.env.action_space, Discrete):

self.is_discrete = True

self.action_size = env.action_space.n

self.actions = np.arange(self.action_size)

else:

self.is_discrete = False

self.action_size = numel(env.action_space.sample())

你可能感兴趣的:(python中arange的使用方法_Python numpy.arange() 使用实例)