random.seed() numpy.random.seed() tf.set_random_seed()作用范围、区别

最近在做图片的深度学习时,在程序中遇到了random.seed()、numpy.random.seed()、tf.set_random_seed()三种随机种子。在深度学习中,先确定好随机种子,以后每次随机的结果相同。在每次执行代码时,使每次切分后的训练集、验证集输入结果相同,便于验证学习参数的有效性和查找问题。

但是他们有什么异同?带着这些一连串的疑问,开始了实验。

以上三种随机种子分属于不同的Python模组,看似“长的”差不多、“效果”也差不多。关于他们三的用途,很多博主分开讲的很清楚,但是把他们放到一起做个对比的博文比较少,本文主要把他们放到一起做对比。

一、单独设置random.seed(1)
import numpy as np
import random
import tensorflow as tf
list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 
random.seed(1)
 
a = random.sample(list, 5)
b = np.random.randint(low=1, high=1000)
c = tf.random_normal([2, 3])
print(a)
print(b)
 
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(c))
运行结果:

第一次执行结果:
[3, 2, 5, 1, 4]
560
[[-0.75625855  0.9842202   0.11055301]
 [ 1.3178085   1.1288372  -1.3483504 ]]
 
第二次执行结果:
[3, 2, 5, 1, 4]
414
[[ 1.3603671  -0.8897449  -0.42791504]
 [ 0.64151275 -0.2893453  -0.17066564]]
 结论:random.seed(seed)对numpy、tensorflow模组内的随机函数不起作用。

二、单独设置numpy.random.seed(1)
from numpy.random import seed
import tensorflow as tf
import random
import numpy as np
 
list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 
seed(1)
 
a = random.sample(list, 5)
b = np.random.randint(low=1, high=1000)
c = tf.random_normal([2, 3])
print(a)
print(b)
 
with tf.Session() as sess1:
    sess1.run(tf.global_variables_initializer())
    print(sess1.run(c))
    print(sess1.run(c))
 
with tf.Session() as sess2:
    sess2.run(tf.global_variables_initializer())
    print(sess2.run(c))
    print(sess2.run(c))
执行结果:

# 第一次执行:
[4, 2, 7, 5, 10]
38
[[ 2.3121657  -0.8977492  -0.01008329]
 [-0.6408148   0.19963263 -0.7215879 ]]
[[ 0.8633339  -0.69526696  1.6130834 ]
 [ 0.30339143  0.77477974  0.5178088 ]]
[[-0.6610677  -0.14873989  0.592189  ]
 [-0.691019    0.13392478 -0.03835497]]
[[ 0.9954625  -0.27525836  0.5789619 ]
 [-1.0326229  -0.910877   -1.3278433 ]]
 
# 第二次执行:
[9, 10, 5, 1, 3]
38
[[-1.3300127   0.18582459 -0.19193105]
 [-0.29505548 -0.082302    1.2551965 ]]
[[-0.5707125   0.19154593 -0.56202376]
 [-1.3819716  -0.06733618 -0.06827015]]
[[-0.9323835   0.41968757  0.50094676]
 [ 0.075909    1.0127947   1.3885998 ]]
[[ 0.40404725 -1.4369541  -0.3081668 ]
 [ 0.29238573 -2.5474846   0.19280283]]
结论: numpy.random.seed(seed)对venv2、tensorflow模组内的随机函数不起作用。

三、单独设置tf.set_random_seed(1)
from numpy.random import seed
import tensorflow as tf
import numpy as np
import random
 
tf.set_random_seed(1)
 
list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a = random.sample(list, 5)
b = np.random.randint(low=1, high=1000)
c = tf.random_normal([2, 3])
print(a)
print(b)
 
with tf.Session() as sess1:
    sess1.run(tf.global_variables_initializer())
    print(sess1.run(c))
    print(sess1.run(c))
 
with tf.Session() as sess2:
    sess2.run(tf.global_variables_initializer())
    print(sess2.run(c))
    print(sess2.run(c))
运行结果:

# 第一次运行
[4, 9, 3, 5, 7]
244
[[-0.67086124  0.22357143  0.79727304]
 [ 0.09617059  0.72314787  0.33812162]]
[[ 1.2690554  -2.1627116   1.7188579 ]
 [-0.24154273  0.47120836  0.8914816 ]]
[[-0.67086124  0.22357143  0.79727304]
 [ 0.09617059  0.72314787  0.33812162]]
[[ 1.2690554  -2.1627116   1.7188579 ]
 [-0.24154273  0.47120836  0.8914816 ]]
 
# 第二次运行
[9, 4, 10, 7, 2]
278
[[-2.092974    0.72193277  0.8222583 ]
 [-0.20968539  2.0839696  -0.87704235]]
[[ 0.10735091 -0.5698958   0.5758549 ]
 [-0.21616328 -1.3219575   1.5569185 ]]
[[-2.092974    0.72193277  0.8222583 ]
 [-0.20968539  2.0839696  -0.87704235]]
[[ 0.10735091 -0.5698958   0.5758549 ]
 [-0.21616328 -1.3219575   1.5569185 ]]
结论: 

tf.set_random_seed(seed)对venv2、numpy模组内的随机函数不起作用;
tf.set_random_seed(seed)设置的seed值仅一次有效。
通过相同的实验,random.seed(seed)、numpy.random.seed(seed)、tf.set_random_seed(seed)两两组合设置随机种子,均对第三方模组的随机函数不起作用,并且所设置的两两组合随机种子之间无干扰。在此就不罗列实验过程和结果了。

四、 三个种子一起设置
from numpy.random import seed
import tensorflow as tf
from tensorflow import set_random_seed
import numpy as np
import random
 
seed(1)
random.seed(1)
set_random_seed(1)
 
list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 
a = random.sample(list, 5)
b = np.random.randint(low=1, high=1000)
c = tf.random_normal([2, 3])
for i in range(2):
    print(a)
    print(b)
 
    with tf.Session() as sess1:
        sess1.run(tf.global_variables_initializer())
        print(sess1.run(c))
        print(sess1.run(c))
 
    with tf.Session() as sess2:
        sess2.run(tf.global_variables_initializer())
        print(sess2.run(c))
        print(sess2.run(c))
执行结果:

# 第一次执行结果
[3, 2, 5, 1, 4]
38
[[-0.67086124  0.22357143  0.79727304]
 [ 0.09617059  0.72314787  0.33812162]]
[[ 1.2690554  -2.1627116   1.7188579 ]
 [-0.24154273  0.47120836  0.8914816 ]]
[[-0.67086124  0.22357143  0.79727304]
 [ 0.09617059  0.72314787  0.33812162]]
[[ 1.2690554  -2.1627116   1.7188579 ]
 [-0.24154273  0.47120836  0.8914816 ]]
[3, 2, 5, 1, 4]
38
[[-0.67086124  0.22357143  0.79727304]
 [ 0.09617059  0.72314787  0.33812162]]
[[ 1.2690554  -2.1627116   1.7188579 ]
 [-0.24154273  0.47120836  0.8914816 ]]
[[-0.67086124  0.22357143  0.79727304]
 [ 0.09617059  0.72314787  0.33812162]]
[[ 1.2690554  -2.1627116   1.7188579 ]
 [-0.24154273  0.47120836  0.8914816 ]]
 
# 第二次执行结果
[3, 2, 5, 1, 4]
38
[[-0.3143593   0.6476281   0.01794253]
 [-0.1755162  -0.5712612  -0.7455791 ]]
[[ 1.7597818   0.9010502  -0.766882  ]
 [-0.16980433  0.98841023  1.1415099 ]]
[[-0.3143593   0.6476281   0.01794253]
 [-0.1755162  -0.5712612  -0.7455791 ]]
[[ 1.7597818   0.9010502  -0.766882  ]
 [-0.16980433  0.98841023  1.1415099 ]]
[3, 2, 5, 1, 4]
38
[[-0.3143593   0.6476281   0.01794253]
 [-0.1755162  -0.5712612  -0.7455791 ]]
[[ 1.7597818   0.9010502  -0.766882  ]
 [-0.16980433  0.98841023  1.1415099 ]]
[[-0.3143593   0.6476281   0.01794253]
 [-0.1755162  -0.5712612  -0.7455791 ]]
[[ 1.7597818   0.9010502  -0.766882  ]
 [-0.16980433  0.98841023  1.1415099 ]]
 结论:

seed(1)、random.seed(1)、set_random_seed(1)之间互不干扰;
执行次数、for循环次数对seed(1)、random.seed(1)结果无影响;
执行次数、for循环次数对set_random_seed(1)执行结果有影响;
五、设置的seed()值仅一次有效
from numpy import *
num=0
random.seed(1)
b = random.random()
while(num<5):
    print(b)
    num+=1
结果:

0.417022004702574
0.417022004702574 # i=1和i=0使用的都是相同的seed(1),所以结果相同
0.417022004702574
0.417022004702574
0.417022004702574
 

from numpy import *
num=0
random.seed(1)
 
while(num<5):
    b = random.random()
    print(b)
    num+=1
结果:

# 第一次执行
0.417022004702574
0.7203244934421581 # i=1对应的seed(1)值已失效,所以结果和i=0不同
0.00011437481734488664
0.30233257263183977
0.14675589081711304
 
# 第二次执行
0.417022004702574
0.7203244934421581
0.00011437481734488664
0.30233257263183977
0.14675589081711304
 结论:设置的seed()值仅一次有效

六、总结
随机函数    分属模组    作用范围    参数取值    相同点
random.seed(seed)    venv2    venv2模组内随机函数的随机操作    
整形、浮点型、字符串。

1、seed值不同,生成的随机数不同

2、设置的seed()值仅一次有效

numpy.random.seed(seed)    numpy    numpy模组内随机函数的随机操作    整形(0~2**32-1)、一维整形数组。
tf.set_random_seed(seed)    tensorflow    tensorflow模组内随机函数的随机操作    整形
小小的函数有挺大的内涵。本文如果有描述不正确的地方还请大家多多指正,我们一起进步,谢谢。

参考:

https://www.cnblogs.com/subic/p/8454025.html

https://blog.csdn.net/linzch3/article/details/58220569
https://blog.csdn.net/lgh0824/article/details/93041465
https://blog.csdn.net/qq_31511955/article/details/81948902
 

你可能感兴趣的:(深度学习)