B-Tree & B+Tree

B-Tree

B树中所有结点中孩子结点个数的最大值成为B树的阶,通常用m表示,从查找效率考虑,一般要求m>=3。一棵m阶B树或者是一棵空树,或者是满足以下条件的m叉树。
1)每个结点最多有m个分支(子树);而最少分支数要看是否为根结点,如果是根结点且不是叶子结点,则至少要有两个分支,非根非叶结点至少有ceil(m/2)个分支,这里ceil代表向上取整。
2)如果一个结点有n-1个关键字,那么该结点有n个分支。这n-1个关键字按照递增顺序排列。
3)每个结点的结构为:

n

k1

k2

...

kn

p0

p1

p2

...

pn

其中,n为该结点中关键字的个数;ki为该结点的关键字且满足ki

4)结点内各关键字互不相等且按从小到大排列。
5)叶子结点处于同一层;可以用空指针表示,是查找失败到达的位置。

B-Tree & B+Tree_第1张图片

B+ Tree

B+树是B树的变体,也是一种多路搜索树,定义基本与B树同,除了:

1.非叶子结点的子树指针与关键字个数相同;

2.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B树是开区间);

3.为所有叶子结点增加一个链指针;

4.所有关键字都在叶子结点出现;

B-Tree & B+Tree_第2张图片

为什么说B+树比B树更适合数据库索引

1、 B+树的磁盘读写代价更低:B+树的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了。

2、B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

3、由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。

你可能感兴趣的:(数据结构)