RSKT-2014
International conference on rough sets and knowledge technology
池化层的作用(一文看尽深度学习中的9种池化方法!)
作者针对 max 和 ave pooling 的缺点,
提出了 mix pooling——randomly employs the local max pooling and average pooling methods when training CNNs
借鉴 dropout, 混合max 和 ave 池化,提出 mixed pooling
λ \lambda λ is a random value being either 0 or 1
2)mixed pooling 反向传播
先看看 max 和 ave pooling 的反向传播
mixed pooling
得记录下 λ \lambda λ 的取值,才能正确反向传播
the pooling history about the random value λ \lambda λ in Eq. must be recorded during forward propagation.
3)Pooling at Test Time
统计训练时某次 pooling 采用 max 和 ave 的频次 F m a x k F_{max}^{k} Fmaxk 和 F a v e k F_{ave}^{k} Favek,谁的频次高测试的时候该处的 pooling 就用谁,开始玄学了是吧,哈哈哈哈
train error 高,acc 高
作者解释 This indicates that the proposed mixed pooling outperforms max pooling and average pooling to address the over-fitting problem
可视化结果
可以看出 mixed pooling 包含更多的信息
2)CIFAR-100
3)SVHN
4)Time Performance
LRN
k , n , α , β k, n, \alpha, \beta k,n,α,β 都是超参数, a , b a,b a,b 输入输出特征图, x , y x,y x,y 空间位置, i i i 通道位置
以下内容来自 深度学习的局部响应归一化LRN(Local Response Normalization)理解
import tensorflow as tf
import numpy as np
x = np.array([i for i in range(1,33)]).reshape([2,2,2,4])
y = tf.nn.lrn(input=x,depth_radius=2,bias=0,alpha=1,beta=1)
with tf.Session() as sess:
print(x)
print('#############')
print(y.eval())
LCN
《What is the best multi-stage architecture for object recognition?》