- AIGC的底层框架和技术模块
五岔路口
AIGC
AIGC(ArtificialIntelligenceGeneratedContent,人工智能生成内容)的底层框架和技术模块是构建其强大自然语言处理能力的核心组成部分。以下是对AIGC底层框架和技术模块的详细解析:底层框架AIGC的底层框架主要基于深度学习的语言模型,特别是Transformer模型及其变种,如GPT(GenerativePre-trainedTransformer)等。这些模型
- 【Unity】cinemachine核心知识
liwulin0506
unityunity数码相机游戏引擎
cinemachine核心知识cinemachineVirtualCamera中body参数作用cinemachineVirtualCamera中body有哪些选项cinemachineVirtualCamera中am参数作用以及选项cinemachineVirtualCamera中body参数作用在Unity的CinemachineVirtualCamera中,Body参数模块主要负责控制虚拟相
- 【 书生·浦语大模型实战营】学习笔记(三):“茴香豆” 搭建你的RAG 智能助理
GoAI
自然语言处理NLP深入浅出AI深入浅出LLM深度学习LLM人工智能大模型
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·
- 新春特辑:人工智能专题大复盘
互联互通社区
人工智能大数据区块链python编程语言
播洒一年的阳光,收获一路的辉煌;挥洒一年的汗水,绽放一路的明媚;付出一年的辛苦,装点一路的幸福;感谢一年的努力,创造一路的奇迹。新的一年,愿与你再扬帆济海,创造美好精彩!人工智能:人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- AI在虚拟客户服务中的应用:提供24_7支持
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟客户服务中的应用:提供24/7支持关键词:虚拟客服,自然语言处理(NLP),聊天机器人,对话系统,深度学习,用户支持,自动化1.背景介绍随着互联网和移动互联网的迅速发展,客户服务成为各大企业提升竞争力的重要环节。但传统的客服模式存在诸多痛点:人力成本高、响应时间慢、工作时间有限等。在企业面临全时用户需求和竞争压力日益加剧的当下,如何以更低的成本、更快的速度、更高效的资源利用率,持续提供优
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- yolov5--hsv增强,hyp超参数,
yuyuyue249
YOLO计算机视觉机器学习
一.hyp超参数:文件位置:data/hyps/hyp.scratch-low.yaml具体如下:lr0:0.01#initiallearningrate(SGD=1E-2,Adam=1E-3)lrf:0.01#finalOneCycleLRlearningrate(lr0*lrf)momentum:0.937#SGDmomentum/Adambeta1weight_decay:0.0005#op
- 数据挖掘常用算法优缺点分析
天波烟客00
数据挖掘数据挖掘机器学习
领取机器学习视频教程:http://www.admin444.com/P-c8129a48常用的机器学习、数据挖掘方法有分类,回归,聚类,推荐,图像识别等。在实际应用中,一般都是采用启发式学习方式来实验。偏差&方差偏差:描述的是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差bias其实是模型太简单而带来的估计不准确的部分---欠拟合方差:描述的是预测值的变化范围、离散程度
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 【llm对话系统】大模型 Llama 源码分析之 Flash Attention
kakaZhui
llama人工智能AIGCchatgpt
1.写在前面近年来,基于Transformer架构的大型语言模型(LLM)在自然语言处理(NLP)领域取得了巨大的成功。Transformer的核心组件是自注意力(Self-Attention)机制,它允许模型捕捉输入序列中不同位置之间的关系。然而,标准的自注意力机制的计算复杂度与序列长度的平方成正比,这使得它在处理长序列时效率低下。为了解决这个问题,FlashAttention被提出,它是一种高
- 【自然语言处理(NLP)】基于Transformer架构的预训练语言模型:BERT 训练之数据集处理、训练代码实现
道友老李
自然语言处理(NLP)自然语言处理transformer
文章目录介绍BERT训练之数据集处理BERT原理及模型代码实现数据集处理导包加载数据生成下一句预测任务的数据从段落中获取nsp数据生成遮蔽语言模型任务的数据从token中获取mlm数据将文本转换为预训练数据集创建Dataset加载WikiText-2数据集BERT训练代码实现导包加载数据构建BERT模型模型损失训练获取BERT编码器个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言
- 【自然语言处理(NLP)】Word2Vec 原理及模型架构(Skip-Gram、CBOW)
道友老李
自然语言处理(NLP)自然语言处理word2vec
文章目录介绍Word2Vec介绍Word2Vec的核心概念Word2Vec的优点Word2Vec的缺点Word2Vec的应用场景Word2Vec的实现工具总结Word2Vec数学推导过程1.CBOW模型的数学推导(1)输入表示(2)词向量矩阵(3)输出层(4)损失函数(5)参数更新2.Skip-Gram模型的数学推导(1)输入表示(2)词向量矩阵(3)输出层(4)损失函数(5)参数更新3.优化技巧
- 【友好篇】从零开始:了解CMD与WSL命令行,认识Linux与虚拟机技术
泪不是Web妳而流
Web安全从0到1linuxbash
文章目录前言一、概念1、CMD的介绍2、Linux的介绍3、WSL的介绍二、简单使用1.CMD(1)打开命令行(2)cmd命令2.WSL三、总结1、虚拟机(VirtualMachine)2、kaliLinux前言你是否曾经对那些在命令行中自如操作的人感到敬佩,甚至好奇他们是如何轻松应对看似复杂的任务?你是否曾想过,自己也能掌握这项强大的技能,提升工作效率,甚至探索全新的技术领域?命令行不仅是程序员
- JVM - 运行时数据区详细篇
星辰与晨曦
JVMjava后端jvm
文章目录运行时数据区的组成概述程序计数器(ProgramCounterRegister)概念计数器是线程私有的作用Java虚拟机栈(JavaVirtualMachine)虚拟机栈出现的背景栈和堆的区别什么是Java虚拟机栈本地方法栈(NativeMethodStack)Java堆概述堆内存区域的划分对象创建内存分配的过程新生代和老年代的配置比例JVM调优不同代的回收思想TLAB机制为什么会有TLA
- 向量语义(Vector Semantics)与表征学习(Representation Learning)详解
苏西月
学习人工智能
1.向量语义(VectorSemantics)与词嵌入(WordEmbeddings)向量语义的核心思想是用数学向量来表示单词的意义。传统的NLP方法(如基于规则的语言模型)需要人为定义单词的语义规则,而向量语义方法则通过分析单词在大量文本中的使用模式来学习其语义。关键词:词向量(WordRepresentations):单词被表示为一个多维向量,每个维度对应于该单词的某种语义特征。分布式表示(D
- 【llm对话系统】大模型 Llama、Qwen 和 ChatGLM 的网络结构和训练方法对比
kakaZhui
llama人工智能AIGCchatgptpython
1.引言近年来,大型语言模型(LLM)取得了令人瞩目的进展,其中Llama、Qwen和ChatGLM是三个备受关注的开源模型。它们都在Transformer架构的基础上进行了改进和优化,并在各种NLP任务上取得了优异的性能。本文将深入分析Llama、Qwen和ChatGLM的网络结构和训练方法,比较它们的异同以及各自的优势。2.模型结构对比特性LlamaQwenChatGLM基础架构Decoder
- 【GAE】《High-Dimensional Continuous Control Using Generalized Advantage Estimation》译读笔记
songyuc
笔记
High-DimensionalContinuousControlUsingGeneralizedAdvantageEstimation摘要Policygradientmethods在reinforcementlearning中是一种具有吸引力的方法,因为它们直接优化累积奖励,并且可以很直接地与非线性functionapproximators如neuralnetworks一起使用。其两个主要挑战是
- LLM的实时性:迈向毫秒级响应的AI
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
LargeLanguageModel(LLM),实时性,响应时间,微服务架构,并行处理,知识图谱,优化算法,延迟最小化1.背景介绍大型语言模型(LLM)在自然语言处理领域取得了令人瞩目的成就,展现出强大的文本生成、翻译、摘要和问答能力。然而,现有的LLM模型通常面临着响应时间较慢的问题,这限制了其在实时应用场景中的应用。例如,在聊天机器人、实时翻译和智能客服等领域,用户期望能够获得即时响应,而传统
- 使用Scikit-learn实现支持向量机分类器
清水白石008
pythonPython题库scikit-learn支持向量机python
使用Scikit-learn实现支持向量机分类器引言支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,广泛应用于分类和回归任务。SVM的核心思想是通过寻找一个最佳的超平面来分隔不同类别的数据点。本文将详细介绍如何使用Python的Scikit-learn库实现一个支持向量机分类器,包括数据准备、模型训练、评估和可视化等步骤。1.支持向量机的基本原理支持向量机的
- ARM-Cortex学习(一)
小白不想画工图
arm开发学习嵌入式硬件
一、ARMARM(全称AdvancedRISCMachines)既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。ARM处理器(AdvancedRISCMachines)是英国Acorn(ARM公司最初是其一个部门,后独立成为一个公司)有限公司设计的低功耗成本的第一款RISC微处理器。ARM处理器本身是32位设计,但也配备16位指令集,一般来讲比等价32位代
- 面试官问:为什么 Java 线程没有 Running 状态?我懵了
字节全栈_rJF
java开发语言
更具体点,javadoc中是这样说的:处于runnable状态下的线程正在Java虚拟机中执行,但它可能正在等待来自于操作系统的其它资源,比如处理器。AthreadintherunnablestateisexecutingintheJavavirtualmachinebutitmaybewaitingforotherresourcesfromtheoperatingsystemsuchasproc
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- Unet 改进:在encoder和decoder间加入TransformerBlock
听风吹等浪起
AI改进系列transformer图像分割Unet
目录1.TransformerBlock2.Unet改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.TransformerBlockTransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前
- 【AI知识点】三种不同架构的大语言模型(LLMs)的区别
AI完全体
AI知识点人工智能语言模型自然语言处理机器学习深度学习注意力机制自注意力机制
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】在自然语言处理(NLP)中,预训练语言模型(LLMs,LargeLanguageModels)通常基于不同的架构,如仅编码器的模型(Encoder-only)、编码器-解码器的模型(Encoder-Decoder),以及仅解码器的模型(Decoder-only)。这三种架构有着显著的区别,主要体现在功能、适用任务和性能上。下面从架构、功能
- LearnLM: Improving Gemini for Learning
UnknownBody
LLMDaily语言模型人工智能自然语言处理
本文是LLM系列文章,针对《LearnLM:ImprovingGeminiforLearning》的翻译。LearnLM:提升Gemini的学习能力摘要1引言2建模3人类评价设计4结果5结论摘要今天的生成式人工智能系统默认情况下会呈现信息,而不是像人类导师那样让用户参与学习服务。为了解决这些系统的广泛潜在教育用例,我们将注入教学行为的挑战重新定义为一种教学指导,其中培训和评估示例包括描述后续模型中
- 机器学习笔记——特征工程
好评笔记
补档机器学习人工智能论文阅读AIGCtransformer深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$