最简单的BP神经网络?可能指单输入单输出的单隐层感知器模型。
BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。
神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络爱发猫 www.aifamao.com。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。
前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。Hopfield神经网络是反馈网络的代表。
Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。模拟退火算法是为解决优化计算中局部极小问题提出的。
Baltzmann机是具有随机输出值单元的随机神经网络,串行的Baltzmann机可以看作是对二次组合优化问题的模拟退火算法的具体实现,同时它还可以模拟外界的概率分布,实现概率意义上的联想记忆。
自组织竞争型神经网络的特点是能识别环境的特征并自动聚类。自组织竟争型神经网络已成功应用于特征抽取和大规模数据处理。
一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。
2、BP神经网络:(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)分类:把输入向量所定义的合适方式进行分类;(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。
网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
扩展资料:1、BP神经网络优劣势BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。
网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。②容易陷入局部极小值。③网络层数、神经元个数的选择没有相应的理论指导。④网络推广能力有限。
2、人工神经网络的特点和优越性,主要表现在以下三个方面①具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。③具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
参考资料:百度百科—前馈神经网络百度百科—BP神经网络百度百科—卷积神经网络百度百科—人工神经网络。
神经网络的拓扑结构包括网络层数、各层神经元数量以及各神经元之间相互连接的方式。人工神经网络的模型从其拓扑结构角度去看,可分为层次型和互连型。
层次型模型是将神经网络分为输入层(InputLayer)、隐层(HiddenLayer)和输出层(OutputLayer),各层顺序连接。
其中,输入层神经元负责接收来自外界的输入信息,并将其传递给隐层神经元。隐层负责神经网络内部的信息处理、信息变换。通常会根据变换的需要,将隐层设计为一层或多层。
扩展资料:人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。
人工神经网络采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。
参考资料来源:百度百科-人工神经网络。
神经网络模型的分类人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。
根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。
而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型2按照网络信息流向分类从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。
前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。反馈型网络的结构与单层全互连结构网络相同。
在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。
感知机是最简单的神经网络,只有输入层和输出层。hopfeild网络是节点两两连接的网络。
BP网络和径向基神经网络结构都具有隐层;BP网络和径向基神经网络结构(GRBF)的区别BP网络用于函数逼近时,权值的调节采用的是负梯度下降法,这种调节权值的方法有它的局限性,既存在着收敛速度慢和局部极小等缺点。
而径向基神经网络在逼近能力、分类能力和学习速度等方面均优于BO网络。
从理论上讲,RBF网络和BP网络一样可近似任何的连续非线形函数,两者的主要差别在于各使用不同的作用函数,BP网络中的隐层节点使用的是Sigmoid函数,其函数值在输入空间中无限大的范围内为非零值,而RBF网络的作用函数则是局部的。
神经网络模型的分类人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。
根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。
而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型2按照网络信息流向分类从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。
前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。反馈型网络的结构与单层全互连结构网络相同。
在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。
在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络。
在训练神经网络的时候,使用带指数衰减的学习率设置、使用正则化来避免过拟合、使用滑动平均模型来使得最终的模型更加健壮。
程序将计算神经网络前向传播的部分单独定义一个函数inference,训练部分定义一个train函数,再定义一个主函数main。
二、分析与改进设计1.程序分析改进第一,计算前向传播的函数inference中需要将所有的变量以参数的形式传入函数,当神经网络结构变得更加复杂、参数更多的时候,程序的可读性将变得非常差。
第二,在程序退出时,训练好的模型就无法再利用,且大型神经网络的训练时间都比较长,在训练过程中需要每隔一段时间保存一次模型训练的中间结果,这样如果在训练过程中程序死机,死机前的最新的模型参数仍能保留,杜绝了时间和资源的浪费。
第三,将训练和测试分成两个独立的程序,将训练和测试都会用到的前向传播的过程抽象成单独的库函数。这样就保证了在训练和预测两个过程中所调用的前向传播计算程序是一致的。
2.改进后程序设计该文件中定义了神经网络的前向传播过程,其中的多次用到的weights定义过程又单独定义成函数。
通过tf.get_variable函数来获取变量,在神经网络训练时创建这些变量,在测试时会通过保存的模型加载这些变量的取值,而且可以在变量加载时将滑动平均值重命名。
所以可以直接通过同样的名字在训练时使用变量自身,在测试时使用变量的滑动平均值。该程序给出了神经网络的完整训练过程。在滑动平均模型上做测试。
通过tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)获取最新模型的文件名,实际是获取checkpoint文件的所有内容。
神经网络原理及应用1.什么是神经网络?神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人类的神经网络2.神经网络基础知识构成:大量简单的基础元件——神经元相互连接工作原理:模拟生物的神经处理信息的方式功能:进行信息的并行处理和非线性转化特点:比较轻松地实现非线性映射过程,具有大规模的计算能力神经网络的本质:神经网络的本质就是利用计算机语言模拟人类大脑做决定的过程。
3.生物神经元结构4.神经元结构模型xj为输入信号,θi为阈值,wij表示与神经元连接的权值,yi表示输出值判断xjwij是否大于阈值θi5.什么是阈值?
临界值。神经网络是模仿大脑的神经元,当外界刺激达到一定的阈值时,神经元才会受刺激,影响下一个神经元。
6.几种代表性的网络模型单层前向神经网络——线性网络阶跃网络多层前向神经网络(反推学习规则即BP神经网络)Elman网络、Hopfield网络、双向联想记忆网络、自组织竞争网络等等7.神经网络能干什么?
运用这些网络模型可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。
虽然神经网络的应用很广,但是在具体的使用过程中到底应当选择哪种网络结构比较合适是值得考虑的。这就需要我们对各种神经网络结构有一个较全面的认识。8.神经网络应用。