低通滤波:
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
# 封装图片显示函数
def image_show(image):
if image.ndim == 2:
plt.imshow(image, cmap='gray')
else:
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
plt.imshow(image)
plt.show()
# 巴特沃斯滤波
def Low_filter(N, M, D0, n):
x, y = np.meshgrid(np.arange(M) - M//2, np.arange(N) - N//2)
D = np.sqrt(x**2 + y**2)
H = 1 / (1 + (D / D0) ** (2*n))
return H
if __name__ == '__main__':
# 读取图像
img_desk = cv.imread('desk.png', 0)
# 参数设置
D0 = 20 # 滤波器参数1
n = 4 # 滤波器参数2
M, N = img_desk.shape
# 二维离散傅里叶变换
desk_fft = np.fft.fft2(img_desk)
desk_ffts = np.fft.fftshift(desk_fft)
# 低通滤波变换
desk_low = Low_filter(M, N, D0, n)
desk_HF = desk_low * desk_ffts
# 傅里叶反变换
img_desk_rec = np.fft.ifft2(desk_HF)
# 显示结果
image_show(np.abs(img_desk_rec))
高通滤波:
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
# 封装图片显示函数
def image_show(image):
if image.ndim == 2:
plt.imshow(image, cmap='gray')
else:
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
plt.imshow(image)
plt.show()
# 巴特沃斯滤波
def High_filter(N, M, D0, n):
x, y = np.meshgrid(np.arange(M) - M//2, np.arange(N) - N//2)
D = np.sqrt(x**2 + y**2)
H = 1 / (1 + (D0 / (D + 1e-5)) ** (2*n))
return H
if __name__ == '__main__':
# 读取图像
img_desk = cv.imread('desk.png', 0)
# 参数设置
D0 = 20 # 滤波器参数1
n = 4 # 滤波器参数2
M, N = img_desk.shape
# 二维离散傅里叶变换
desk_fft = np.fft.fft2(img_desk)
desk_ffts = np.fft.fftshift(desk_fft)
# 高通滤波变换
desk_low = High_filter(M, N, D0, n)
desk_HF = desk_low * desk_ffts
# 傅里叶反变换
img_desk_rec = np.fft.ifft2(desk_HF)
# 显示结果
image_show(np.abs(img_desk_rec))