需求
加载数据
查看数据的基本信息
指定数据截取,将如下字段的数据进行提取,其他数据舍弃
cand_nm: 候选人姓名
contbr_nm:捐赠人所在州
contbr_employer:捐赠人所在公司
contbr_occupation:捐赠人职业
contbr_receipt_amt:捐赠数额(美元)
contbr_receipt_dt:捐款的日期
对新数据进行总览,查看是否存在缺失数据
用统计学指标快速描述数值型属性的概要。
空值处理。可能因为忘记填写或者保密等等原因,相关字段出现了空值,将其填充为NOT PROVIDE
异常值处理。将捐款金额<=0的数据删除
新建一列为各个候选人所在党派party
查看party这一列中有哪些不同的元素
统计party列中各个元素出现次数
查看各个党派收到的政治献金总数contb_receipt_amt
查看具体每天各个党派收到的政治献金总contb_receipt_amt
将表中日期格式转换为'yyyy-mm-dd'。
查看老兵(捐献者职业)DISABLED VETERAN主要支持谁
import numpy as np
import pandas as pd
df = pd.read_csv("./data/usa_election-Copy1.txt")
# 方便操作,将月份和参选人以及所在政党进行定义:
months = {'JAN':1, 'FEB':2, 'MAR':3, 'APR':4, 'MAY':5, 'JUN':6, 'JUL':7, 'AUG':8, 'SEP': 9, 'OCT': 10, 'NOV':11, 'DEC':12}
of_interest = ['Obama,Barack','Romney,Mitt','Santorum,Rick','Paul,Ron','Gingrich','Newt']
parties = {
'Bachmann, Michelle':'Republican',
'Romney, Mitt':'Republican',
'Obama, Barack':'Democrat',
"Roemer, Charles E. 'Buddy' III": 'Reform',
'Pawlenty, Timothy':'Republican',
'Johnson, Gary Earl':'Libertarian',
'Paul, Ron':'Republican',
'Santorum, Rick': 'Republican',
'Cain, Herman': 'Republican',
'Gingrich, Newt': 'Republican',
'McCotter, Thaddeus G':'Republican',
'Huntsman, Jon':'Republican',
'Perry, Rick': 'Republican',
}
df.info()
RangeIndex: 536041 entries, 0 to 536040
Data columns (total 16 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 cmte_id 536041 non-null object
1 cand_id 536041 non-null object
2 cand_nm 536041 non-null object
3 contbr_nm 536041 non-null object
4 contbr_city 536026 non-null object
5 contbr_st 536040 non-null object
6 contbr_zip 535973 non-null object
7 contbr_employer 525088 non-null object
8 contbr_occupation 530520 non-null object
9 contb_receipt_amt 536041 non-null float64
10 contb_receipt_dt 536041 non-null object
11 receipt_desc 8479 non-null object
12 memo_cd 49718 non-null object
13 memo_text 52740 non-null object
14 form_tp 536041 non-null object
15 file_num 536041 non-null int64
dtypes: float64(1), int64(1), object(14)
memory usage: 65.4+ MB
# 用统计学指标快速描述数值型属性的概要
df.describe()
contb_receipt_amt file_num
count 5.360410e+05 536041.000000
mean 3.750373e+02 761472.107800
std 3.564436e+03 5148.893508
min -3.080000e+04 723511.000000
25% 5.000000e+01 756218.000000
50% 1.000000e+02 763233.000000
75% 2.500000e+02 763621.000000
max 1.944042e+06 767394.000000
# 空值处理。可能因为忘记填写或者保密等等原因,相关字段出现了空值,将其填充为NOT PROVIDE
df.fillna(value="NOT PROVIDE",inplace=True)
df.info()
# 异常处理。将捐款金额<=0 的数据删除
df['contb_receipt_amt']<=0
df[df["contb_receipt_amt"]<=0]
drop_indexs = df[df["contb_receipt_amt"]<=0].index
df.drop(labels=drop_indexs,inplace=True)
df.info()
df_need = df[["cand_nm","contbr_nm","contbr_employer","contbr_occupation","contb_receipt_amt","contb_receipt_dt"]]
df_need
# 新建一列为各个候选人所在党派party
df_need["party"] = df_need["cand_nm"].map(parties)
df_need.head()
# 查看party这一列中有哪些不同的元素
df_need["party"].unique()
array(['Republican', 'Democrat', 'Reform', 'Libertarian'], dtype=object)
# 统计party列中各个元素出现次数
df_need["party"].value_counts()
Democrat 289999
Republican 234300
Reform 5313
Libertarian 702
Name: party, dtype: int64
# 查看各个党派收到的政治献金总数contb_receipt_amt
df_need.groupby(by="party")["contb_receipt_amt"].sum()
party
Democrat 8.259441e+07
Libertarian 4.132769e+05
Reform 3.429658e+05
Republican 1.251181e+08
Name: contb_receipt_amt, dtype: float64
# 查看具体每天各个党派收到的政治献金总contb_receipt_amt
df_need.groupby(by=["contb_receipt_dt","party"])["contb_receipt_amt"].sum()
contb_receipt_dt party
01-APR-11 Reform 50.00
Republican 12635.00
01-AUG-11 Democrat 182198.00
Libertarian 1000.00
Reform 1847.00
...
31-MAY-11 Republican 313839.80
31-OCT-11 Democrat 216971.87
Libertarian 4250.00
Reform 3205.00
Republican 751542.36
Name: contb_receipt_amt, Length: 1183, dtype: float64
# 将表中日期格式转换为'yyyy-mm-dd'。
def transform(d):
day,month,year = d.split("-")
month = months[month]
return "20"+year+"-"+str(month)+"-"+day
df_need["contb_receipt_dt"]= df_need["contb_receipt_dt"].map(transform)
df_need
# 查看老兵(捐献者职业)DISABLED VETERAN主要支持谁. 给谁捐赠的钱越多
# 将源数据的老兵这个职业的行数据取出
df_need["contbr_occupation"] == "DISABLED VETERAN"
df_old = df_need[df_need["contbr_occupation"] == "DISABLED VETERAN"]
df_old
df_old.groupby(by="cand_nm")["contb_receipt_amt"].sum()
cand_nm
Cain, Herman 300.00
Obama, Barack 4205.00
Paul, Ron 2425.49
Santorum, Rick 250.00
Name: contb_receipt_amt, dtype: float64