哈希算法和时间复杂度



​​​​​​​
参考:技术参考-大幸运的博客技术站

Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

  哈希表是根据设定的哈希函数H(key)和处理冲突方法将一组关键字映射到一个有限的地址区间上,并以关键字在地址区间中的象作为记录在表中的存储位置,这种表称为哈希表或散列,所得存储位置称为哈希地址或散列地址。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。

  通过将单向数学函数(有时称为“哈希算法”)应用到任意数量的数据所得到的固定大小的结果。如果输入数据中有变化,则哈希也会发生变化。哈希可用于许多操作,包括身份验证和数字签名。也称为“消息摘要”。

  简单解释:哈希(Hash)算法,即散列函数。它是一种单向密码体制,即它是一个从明文到密文的不可逆的映射,只有加密过程,没有解密过程。同时,哈希函数可以将任意长度的输入经过变化以后得到固定长度的输出。哈希函数的这种单向特征和输出数据长度固定的特征使得它可以生成消息或者数据。

哈希算法和时间复杂度_第1张图片

 常用hash算法的介绍:
  (1)MD4

  MD4(RFC 1320)是 MIT 的Ronald L. Rivest在 1990 年设计的,MD 是 Message Digest(消息摘要) 的缩写。它适用在32位字长的处理器上用高速软件实现——它是基于 32位操作数的位操作来实现的。

  (2)MD5

  MD5(RFC 1321)是 Rivest 于1991年对MD4的改进版本。它对输入仍以512位分组,其输出是4个32位字的级联,与 MD4 相同。MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好。

  (3)SHA-1及其他

  SHA1是由NIST NSA设计为同DSA一起使用的,它对长度小于264的输入,产生长度为160bit的散列值,因此抗穷举(brute-force)性更好。SHA-1 设计时基于和MD4相同原理,并且模仿了该算法。 

       

 常见hash算法的原理
  散列表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法。顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙。

  散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

  比如我们存储70个元素,但我们可能为这70个元素申请了100个元素的空间。70/100=0.7,这个数字称为负载因子。我们之所以这样做,也是为了“快速存取”的目的。我们基于一种结果尽可能随机平均分布的固定函数H为每个元素安排存储位置,这样就可以避免遍历性质的线性搜索,以达到快速存取。但是由于此随机性,也必然导致一个问题就是冲突。所谓冲突,即两个元素通过散列函数H得到的地址相同,那么这两个元素称为“同义词”。这类似于70个人去一个有100个椅子的饭店吃饭。散列函数的计算结果是一个存储单位地址,每个存储单位称为“桶”。设一个散列表有m个桶,则散列函数的值域应为[0,m-1]。

  解决冲突是一个复杂问题。

  冲突主要取决于:

  (1)散列函数,一个好的散列函数的值应尽可能平均分布。

  (2)处理冲突方法。

  (3)负载因子的大小。太大不一定就好,而且浪费空间严重,负载因子和散列函数是联动的。

  解决冲突的办法:

  (1)线性探查法:冲突后,线性向前试探,找到最近的一个空位置。缺点是会出现堆积现象。存取时,可能不是同义词的词也位于探查序列,影响效率。

  (2)双散列函数法:在位置d冲突后,再次使用另一个散列函数产生一个与散列表桶容量m互质的数c,依次试探(d+n*c)%m,使探查序列跳跃式分布。

  常用的构造散列函数的方法

  散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位:

  1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a?key + b,其中a和b为常数(这种散列函数叫做自身函数)

  2. 数字分析法:分析一组数据,比如一组员工的出生年月日,这时我们发现出生年月日的前几位数字大体相同,这样的话,出现冲突的几率就会很大,但是我们发现年月日的后几位表示月份和具体日期的数字差别很大,如果用后面的数字来构成散列地址,则冲突的几率会明显降低。因此数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址。

  3. 平方取中法:取关键字平方后的中间几位作为散列地址。

  4. 折叠法:将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(去除进位)作为散列地址。

  5. 随机数法:选择一随机函数,取关键字的随机值作为散列地址,通常用于关键字长度不同的场合。

  6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p, p《=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。

  查找的性能分析

  散列表的查找过程基本上和造表过程相同。一些关键码可通过散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用平均查找长度来衡量。

  查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素:

  1. 散列函数是否均匀;

  2. 处理冲突的方法;

  3. 散列表的装填因子。

  散列表的装填因子定义为:α= 填入表中的元素个数 / 散列表的长度

  α是散列表装满程度的标志因子。由于表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。

  实际上,散列表的平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。

  了解了hash基本定义,就不能不提到一些著名的hash算法,MD5 和 SHA-1 可以说是目前应用最广泛的Hash算法,而它们都是以 MD4 为基础设计的。那么他们都是什么意思呢?

  这里简单说一下:

  (1) MD4

  MD4(RFC 1320)是 MIT 的 Ronald L. Rivest 在 1990 年设计的,MD 是 Message Digest 的缩写。它适用在32位字长的处理器上用高速软件实现--它是基于 32 位操作数的位操作来实现的。

  (2) MD5

  MD5(RFC 1321)是 Rivest 于1991年对MD4的改进版本。它对输入仍以512位分组,其输出是4个32位字的级联,与 MD4 相同。MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好

  (3) SHA-1 及其他

  SHA1是由NIST NSA设计为同DSA一起使用的,它对长度小于264的输入,产生长度为160bit的散列值,因此抗穷举(brute-force)性更好。SHA-1 设计时基于和MD4相同原理,并且模仿了该算法。

  哈希表不可避免冲突(collision)现象:对不同的关键字可能得到同一哈希地址 即key1≠key2,而hash(key1)=hash(key2)。因此,在建造哈希表时不仅要设定一个好的哈希函数,而且要设定一种处理冲突的方法。可如下描述哈希表:根据设定的哈希函数H(key)和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集(区间)上并以关键字在地址集中的“象”作为相应记录在表中的存储位置,这种表被称为哈希表。

  对于动态查找表而言,1) 表长不确定;2)在设计查找表时,只知道关键字所属范围,而不知道确切的关键字。因此,一般情况需建立一个函数关系,以f(key)作为关键字为key的录在表中的位置,通常称这个函数f(key)为哈希函数。(注意:这个函数并不一定是数学函数)

  哈希函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可。

  现实中哈希函数是需要构造的,并且构造的好才能使用的好。

  那么这些Hash算法到底有什么用呢?

  Hash算法在信息安全方面的应用主要体现在以下的3个方面:

  

  (1) 文件校验

  我们比较熟悉的校验算法有奇偶校验和CRC校验,这2种校验并没有抗数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。

  MD5 Hash算法的“数字指纹”特性,使它成为目前应用最广泛的一种文件完整性校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。

  (2) 数字签名

  Hash 算法也是现代密码体系中的一个重要组成部分。由于非对称算法的运算速度较慢,所以在数字签名协议中,单向散列函数扮演了一个重要的角色。 对 Hash 值,又称“数字摘要”进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。

  (3) 鉴权协议

  如下的鉴权协议又被称作挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。

  文件hash值

  MD5-Hash-文件的数字文摘通过Hash函数计算得到。不管文件长度如何,它的Hash函数计算结果是一个固定长度的数字。与加密算法不同,这一个Hash算法是一个不可逆的单向函数。采用安全性高的Hash算法,如MD5、SHA时,两个不同的文件几乎不可能得到相同的Hash结果。因此,一旦文件被修改,就可检测出来。

  Hash函数还有另外的含义。实际中的Hash函数是指把一个大范围映射到一个小范围。把大范围映射到一个小范围的目的往往是为了节省空间,使得数据容易保存。除此以外,Hash函数往往应用于查找上。所以,在考虑使用Hash函数之前,需要明白它的几个限制:

  1. Hash的主要原理就是把大范围映射到小范围;所以,你输入的实际值的个数必须和小范围相当或者比它更小。不然冲突就会很多。

  2. 由于Hash逼近单向函数;所以,你可以用它来对数据进行加密。

  3. 不同的应用对Hash函数有着不同的要求;比如,用于加密的Hash函数主要考虑它和单项函数的差距,而用于查找的Hash函数主要考虑它映射到小范围的冲突率。

  应用于加密的Hash函数已经探讨过太多了,在作者的博客里面有更详细的介绍。所以,本文只探讨用于查找的Hash函数。

  Hash函数应用的主要对象是数组(比如,字符串),而其目标一般是一个int类型。以下我们都按照这种方式来说明。

  一般的说,Hash函数可以简单的划分为如下几类:

  1. 加法Hash;

  2. 位运算Hash;

  3. 乘法Hash;

  4. 除法Hash;

  5. 查表Hash;

  6. 混合Hash;

  下面详细的介绍以上各种方式在实际中的运用。

  一 加法Hash
  所谓的加法Hash就是把输入元素一个一个的加起来构成最后的结果。标准的加法Hash的构造如下:

  static int additiveHash(String key, int prime)

  {

  int hash, i;

  for (hash = key.length(), i = 0; i 《 key.length(); i++)

  hash += key.charAt(i);

  return (hash % prime);

  }

  这里的prime是任意的质数,看得出,结果的值域为[0,prime-1]。

  二 位运算Hash
  这类型Hash函数通过利用各种位运算(常见的是移位和异或)来充分的混合输入元素。比如,标准的旋转Hash的构造如下:

  static int rotatingHash(String key, int prime)

  {

  int hash, i;

  for (hash=key.length(), i=0; i

  hash = (hash《《4》》28)^key.charAt(i);

  return (hash % prime);

  }

  先移位,然后再进行各种位运算是这种类型Hash函数的主要特点。比如,以上的那段计算hash的代码还可以有如下几种变形:

  hash = (hash《《5》》27)^key.charAt(i);

  hash += key.charAt(i);

  hash += (hash 《《 10);

  hash ^= (hash 》》 6);

  if((i&1) == 0)

  {

  hash ^= (hash《《7》》3);

  }

  else

  {

  hash ^= ~((hash《《11》》5));

  }

  hash += (hash《《5》

  hash = key.charAt(i) + (hash《《6》》16) ? hash;

  hash ^= ((hash《《5》》2));

  三 乘法Hash
  这种类型的Hash函数利用了乘法的不相关性(乘法的这种性质,最有名的莫过于平方取头尾的随机数生成算法,虽然这种算法效果并不好)。比如,

  static int bernstein(String key)

  {

  int hash = 0;

  int i;

  for (i=0; i

  return hash;

  }

  jdk5.0里面的String类的hashCode()方法也使用乘法Hash。不过,它使用的乘数是31。推荐的乘数还有:131, 1313, 13131, 131313等等。

  使用这种方式的著名Hash函数还有:

  // 32位FNV算法

  int M_SHIFT = 0;

  public int FNVHash(byte[] data)

  {

  int hash = (int)2166136261L;

  for(byte b : data)

  hash = (hash * 16777619) ^ b;

  if (M_SHIFT == 0)

  return hash;

  return (hash ^ (hash 》》 M_SHIFT)) & M_MASK;

  }

  以及改进的FNV算法:

  public static int FNVHash1(String data)

  {

  final int p = 16777619;

  int hash = (int)2166136261L;

  for(int i=0;i

  hash = (hash ^ data.charAt(i)) * p;

  hash += hash 《《 13;

  hash ^= hash 》》 7;

  hash += hash 《《 3;

  hash ^= hash 》》 17;

  hash += hash 《《 5;

  return hash;

  }

  除了乘以一个固定的数,常见的还有乘以一个不断改变的数,比如:

  static int RSHash(String str)

  {

  int b = 378551;

  int a = 63689;

  int hash = 0;

  for(int i = 0; i 《 str.length(); i++)

  {

  hash = hash * a + str.charAt(i);

  a = a * b;

  }

  return (hash & 0x7FFFFFFF);

  }

  虽然Adler32算法的应用没有CRC32广泛,不过,它可能是乘法Hash里面最有名的一个了。关于它的介绍,大家可以去看RFC 1950规范。

  四 除法Hash
  除法和乘法一样,同样具有表面上看起来的不相关性。不过,因为除法太慢,这种方式几乎找不到真正的应用。需要注意的是,我们在前面看到的hash的 结果除以一个prime的目的只是为了保证结果的范围。如果你不需要它限制一个范围的话,可以使用如下的代码替代”hash%prime”: hash = hash ^ (hash》》10) ^ (hash》》20)。

  五 查表Hash
  查表Hash最有名的例子莫过于CRC系列算法。虽然CRC系列算法本身并不是查表,但是,查表是它的一种最快的实现方式。下面是CRC32的实现:

  static int crctab[256] = {

  0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832,

  0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,

  0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a,

  0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,

  0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,

  0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,

  0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab,

  0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,

  0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4,

  0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,

  0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074,

  0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,

  0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525,

  0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,

  0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,

  0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,

  0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,

  0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43,

  0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,

  0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c,

  0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,

  0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,

  0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,

  0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd,

  0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,

  0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d,

  0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,

  0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e,

  0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d

  };

  int crc32(String key, int hash)

  {

  int i;

  for (hash=key.length(), i=0; i

  hash = (hash 》》 8) ^ crctab[(hash & 0xff) ^ k.charAt(i)];

  return hash;

  }

  查表Hash中有名的例子有:Universal Hashing和Zobrist Hashing。他们的表格都是随机生成的。

  六 混合Hash
  混合Hash算法利用了以上各种方式。各种常见的Hash算法,比如MD5、Tiger都属于这个范围。它们一般很少在面向查找的Hash函数里面使用。
 

哈希 - O(1)的摊销复杂度 - 搜索与哈希(上)_算法的设计与应用研究-CSDN博客_摊销时间复杂度

哈希 - O(1)的摊销复杂度 - 搜索与哈希(上)

  这次老师给我们讲了哈希,但因为时间的缘故,没有写完。现在正好有些时间,便在此补上这篇博客。
搜索算法

        如果给出一个序列,要求在这个序列中寻找一些元素,那你会怎么做呢?如果允许一些预先操作,你又会怎么做,使得你的方法稳定、高效?

        第一种方法是顺序搜索。顺序搜索,就是从某个元素开始,按某个顺序,遍历整个序列,如果找到,则返回找到,反之返回找不到。这种方法的优点,第一是简便,第二是通用。这种方法地球人都能想到,而且在不允许任何预先处理的情况下使用,这是唯一的办法。

       样例代码给出如下(注:仅给出核心部分,已过测试)

const int MaxLen=10001;
int array[MaxLen];
bool sequential_search(const int& begin,const int& end,const int& value){
for (int i=begin;i if (array[i]==value){
return true;
}
}
return false;
}

        很简单就可以看出其的时间复杂度为O(n)。

        第二种方法是二分查找。这种方法需要排序的预先操作,比如给出一个从小到大的排序好的序列S,一个元素K,在这个序列S中以二分查找的形式,查找这个元素K,具体过程可以概括为:

1.找出序列S的中点的元素E,E将整个序列S分成前半部与后半部两部分;

2.如果K=E,则返回找到;

3.如果K

4.如果K>E,则在后半部递归这个过程予以查找;

5.如果查找都没有成功,则返回找不到。

        根据分析,每层的时间复杂度为O(1),一共有log2n层。所以,可以看出整的时间复杂度是为O(log2n)。但是二分查找有一个显著的缺点:当寻找次数过小时,预先的排序操作会成为一个巨大的包袱,当然,保证的输入除外。如果查找的次数太小,比如说只有一两次,那最快的快速排序的排序速度也只有O(nlog2n),总的来说是O(log2n+log2n),远远大于O(n)的线性时间复杂度。不过二分查找的最大优势还是在的,一般而言,二分搜索的效率还是很高的。
        样例代码给出如下(注:仅核心代码,已过测试):
const int MaxLen=10001;
int array[MaxLen];
int binary_search(int begin,int end,int value){
if (array[begin]!=value && begin==end){
return -1;
}
if (array[begin]==value && begin==end){
return begin;
}
int mid=(begin+end)/2;
if (array[mid]==value){
return mid;
}
if (array[mid] return binary_search(begin,mid-1,value);
}
if (array[mid]>value){
return binary_search(mid+1,end,value);
}
}

但是,有很多时候,我们需要一个最高效的算法。比如说,在编译器的内部,要大量的查询一些程序中的字符串,如果不够高效,那编译器,特别是那些商业的编译器就肯定卖不出去。再比如搜索引擎,在一些时候,也需要用到一些这样的搜索算法,再比如数据库,等等。下面让我们请出这篇博文的主角:哈希算法。
哈希算法,又称散列算法,能大大提高搜索的效率。它的主要工作是将一个数字映射到一个表格的某个地方。打一个比喻,哈希就像那些公司前台的接待人员,直接将领导的电话记住。而哈希,就是将每一个元素的位置记住,就是我们不去找某个东西,而是将它的位置算出来。那么,有哪些方法来求出哈希值呢?我们需要一个传说中的哈希函数,在这里设这个哈希函数为H(x)。
直接取值法
直接取值法,就是直接以当前元素的值来决定它的位置。化成函数就是 H(x)=x。这种方法的好处是不可能冲突,除非两个元素一模一样。而且这样甚至能够保证在哈希表里面的元素有序,就像计数排序一样。
但是这种方法也有缺点,当x的取值太大的时候,耗费的空间同时也会很大。举个例子,如果有3个数:3,6814246421,1654654614874213,那光是这三个数,就已经耗费了巨大的内存空间了。
除法哈希
既然直接取值会耗费很大的内存空间,那我们可以模一下这个变量,一般来说,模一个数组长度,就是不错的选择。这样既可以刚刚好放下这些数据,又不会耗费太多的空间。化成函数就是H(x)=x%m。但是这样就会出现冲突。所谓冲突,就是指两个取值不一样的数,它们在哈希后得出的值相同,映射到了同一个位置。也就是说,a!=b,但H(a)==H(b)。在这里我们先不讨论冲突。那怎样尽量避免冲突呢?答案就是:模一个素数!可以证明,当H(x)定义中x%m的m的因数越多,则冲突的概率就越大。不过,其实最好的方法还是增大表格的大小,这样相应的,x%m的取值也会更为多样化。
位运算哈希
除法哈希的缺点之一,是容易冲突,而且有的时候甚至还不与整一个数相关。下面我就介绍一种位运算哈希,这种哈希主要运用乘法,而且多是位运算,速度较快。同时,除法哈希要求数组长度最好是一个素数,但在计算机中,我们更喜欢让数组长度为2的幂数,这样就不会浪费空间。确切地说,就是利用位运算,充分的混合元素。举个例子,ELFHash就是一个很好的实现。
unsigned int ELFhash(char *key)
{
unsigned long h=0;
while(*key)
{
h=(h<<4)+*key++;
   unsigned long g=h&0Xf0000000L;
   if(g) h^=g>>24;
   h&=~g;
   }
  return h%MOD;
}


乘法哈希
最后介绍一种最实用且最容易记的哈希算法。这种哈希函数叫做乘法哈希。其原理就是将原数看做一个n进制的数在转换回十进制。这种哈希算法的典型实现有BKDRHash。理解起来很容易,也是奥赛中经常用到的算法,一般来说冲突率非常小。

顺带附上BKDRHash的核心代码(已过测试):
unsigned int BKDRHash(char *key){
unsigned int seed=131;
unsigned int hash=0;

while(*key)
{
hash = hash * seed + (*key++);
}
return hash%MOD;
}

--------------------- 
作者:WenDavidOI 
来源:CSDN 
原文:https://blog.csdn.net/wendavidoi/article/details/50670016 
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(算法和数据结构,哈希算法,算法,数据结构)