- 【Hugging Face】transformers 库中 model 的常用方法和属性
彬彬侠
HuggingFacemodel模型的属性和方法transformersHuggingFacepython
HuggingFacetransformers库中model的常用方法和属性在transformers库中,model代表预训练的Transformer模型,可用于文本分类、问答、文本生成等任务。不同任务的model可能会有不同的方法和属性,但它们共享许多常见功能。1.model的常见属性在加载AutoModel或AutoModelForXXX后,可以使用以下属性:fromtransformers
- 【护网行动】最新版护网知识总结,零基础入门到精通,收藏这篇就够了
网络安全小宇哥
oracle数据库安全web安全计算机网络网络安全网络
一、基础知识1.SQL注入:一种攻击手段,通过在数据库查询中注入恶意SQL代码,获取、篡改或删除数据库数据。(1)危害:数据库增删改查、敏感数据窃取、提权/写入shell。(2)类型:按注入点(字符型、数字型、搜索型)、提交方式(get、post、cookie)、执行效果(联合、报错、布尔、时间)分类。(3)注入方式:包括information_schema注入、基于函数报错注入(如updatex
- HarmonyNext实战案例:基于ArkTS的高性能分布式机器学习应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS的高性能分布式机器学习应用开发引言在HarmonyNext生态系统中,分布式机器学习是其核心特性之一。通过分布式机器学习,开发者可以充分利用多设备的计算资源,实现复杂模型的训练与推理。本文将深入探讨如何使用ArkTS12+语法开发一个高性能的分布式机器学习应用,涵盖从基础概念到高级技巧的全面讲解。通过本案例,您将学习到如何利用HarmonyNext的分
- 使用 Python 合并微信与支付宝账单,生成财务报告
python后端
最近用思源笔记记东西上瘾,突然想每个月存一份收支记录进去。但手动整理账单太麻烦了,支付宝导出一份CSV,微信又导出一份,格式还不一样,每次复制粘贴头都大。干脆写了个Python脚本一键处理,核心就干两件事:把俩平台的CSV账单合并到一起自动生成带分类表格的Markdown(直接拖进思源就能渲染)代码主要折腾了这些:支付宝账单前24行都是废话,直接skiprows=24跳过去,GBK编码差点让我栽跟
- BERT(Bidirectional Encoder Representations from Transformers)的序列分类模型,简单学习记录
努力努力再努力呐
BERTbert分类学习
一、代码#本地离线模型使用fromtransformersimportAutoModelForCausalLM,AutoTokenizer,pipeline,BertForSequenceClassification,BertTokenizer#设置具体包含config.json的目录,只支持绝对路径model_dir=r"models\bert-base-chinese"#model_dir=r
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- PyTorch实现CNN:CIFAR-10图像分类实战教程
吴师兄大模型
PyTorchpytorchcnnCIFAR-10图像分类人工智能python卷积神经网络开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- PHP 过滤器
wjs2024
开发语言
PHP过滤器概述PHP过滤器是一种强大的功能,它可以确保在应用程序中处理数据时的安全性。过滤器可以用来验证用户输入、清理数据、转换数据等。在PHP开发中,正确地使用过滤器可以显著减少安全漏洞,提高应用程序的可靠性。过滤器的分类PHP中主要的过滤器分为以下几类:数据验证数据清理数据转换1.数据验证数据验证过滤器确保用户输入的数据符合特定的格式和规则。例如,filter_var函数可以用来验证电子邮件
- Python学习指南:系统化路径 + 避坑建议
程之编
Python全栈通关秘籍青少年编程python开发语言人工智能机器学习
新手小白学习编程就像搭积木——需要从基础开始,逐步构建知识体系。以下是为你量身定制的Python学习路径,帮你告别杂乱,高效入门!一、学习前的关键认知明确目标:想用Python做什么?数据分析(如Excel自动化、可视化)Web开发(如搭建网站)人工智能(如机器学习)自动化办公(如处理文件、邮件)目标不同,后续学习侧重点不同(但基础通用)。避免误区:❌只看教程不写代码✅边学边动手,哪怕抄代码也要运
- 机器学习之KMeans算法
Mr终游
机器学习机器学习算法kmeans
目录一、KMeans的核心思想二、KMeans算法流程三、KMeans的关键点1.优点:2.缺点:四、如何确定最佳k值1.肘部法则2.轮廓系数五、Kmeans的典型应用场景六、代码示例KMeans是一种广泛使用的无监督学习算法,主要用于聚类分析(Clustering)。它的目标是将数据集划分为K个互不重叠的子集(簇,Cluster),使得同一簇内的数据点尽可能相似,不同簇之间的数据点尽可能差异显著
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- 【漫话机器学习系列】130.主成分(Principal Components)
IT古董
漫话机器学习系列专辑机器学习人工智能python
主成分(PrincipalComponents)详解1.什么是主成分?主成分(PrincipalComponents,PCs)是数据集中方差最大的线性组合,它是主成分分析(PrincipalComponentAnalysis,PCA)中的核心概念。主成分可以看作是对原始特征的新表述方式,它通过数学变换找到一组新的正交坐标轴,使得数据的主要变化方向与这些轴对齐。简单来说:主成分是数据集中信息量(方差
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- YOLOv8制作自己的实例分割数据集保姆级教程(包含json转txt)
Sir小珂
YOLOpython深度学习人工智能
1.数据准备首先对原始数据集进行整理,将标注好的图像和标签分别放在两个文件夹中,同时额外新建两个文件夹,用于存放转换完的标签与划分后的数据集。1.1将json格式文件转换为txt格式新建json2txt.py文件,将代码中的文件路径修改为自己的路径。❗❗❗代码中第43行的classes中存放的是自己数据集的分类标签,记得修改成自己的。importjsonimportosfromtqdmimport
- C++开源库大全
大王算法
C/C++开发实战365C++入门及项目实战宝典c++开源
程序员要站在巨人的肩膀上,C++拥有丰富的开源库,这里包括:标准库、Web应用框架、人工智能、数据库、图片处理、机器学习、日志、代码分析等。标准库C++StandardLibrary:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分。
- 基于PyTorch的深度学习——机器学习3
Wis4e
深度学习机器学习pytorch
激活函数在神经网络中作用有很多,主要作用是给神经网络提供非线性建模能力。如果没有激活函数,那么再多层的神经网络也只能处理线性可分问题。在搭建神经网络时,如何选择激活函数?如果搭建的神经网络层数不多,选择sigmoid、tanh、relu、softmax都可以;而如果搭建的网络层次较多,那就需要小心,选择不当就可导致梯度消失问题。此时一般不宜选择sigmoid、tanh激活函数,因它们的导数都小于1
- Http状态码
前端CV攻城狮
http
状态码分类状态码分类1XX信息提示2XX成功3XX重定向4XX客户端错误5XX服务端错误小技巧:假如你看到一个状态码518,你并不知道具体518是什么意思。这时候你只要知道518是属于(5XX,服务器错误就可以了)
- 信号处理应用:电力系统中的信号处理_(10).电力系统信号处理中的现代滤波器设计
kkchenkx
信号处理技术仿真模拟信号处理大数据
电力系统信号处理中的现代滤波器设计1.引言在电力系统中,信号处理技术被广泛应用于监测、保护、控制和优化等多个方面。现代滤波器设计是信号处理技术中的重要组成部分,它能够有效地去除噪声、提取有用信号、提高信号质量,从而确保电力系统的稳定运行和高效性能。本节将介绍现代滤波器设计的基本概念、分类、设计方法及其在电力系统中的应用。2.滤波器的基本概念滤波器是一种信号处理设备,用于从输入信号中提取或抑制特定频
- AI 驱动的软件测试革命:从自动化到智能化的进阶之路
綦枫Maple
AI+软件测试人工智能自动化运维
引言:软件测试的智能化转型浪潮在数字化转型加速的今天,软件产品的迭代速度与复杂度呈指数级增长。传统软件测试依赖人工编写用例、执行测试的模式,已难以应对快速交付与高质量要求的双重挑战。人工智能技术的突破为测试领域注入了新动能,通过机器学习、深度学习、自然语言处理等技术,测试流程正从“被动验证”向“主动预防”演进。本文将深入探讨AI与软件测试的融合路径,结合技术原理、工具实践与行业趋势,为读者呈现一幅
- XGBClassifiler函数介绍
浊酒南街
#算法机器学习XGB
目录前言函数介绍示例前言XGBClassifier是XGBoost库中用于分类任务的类。XGBoost是一种高效且灵活的梯度提升决策树(GBDT)实现,它在多种机器学习竞赛中表现出色,尤其擅长处理表格数据。函数介绍XGBClassifiler(max_depth=3,learning_rate=0.1,n_estimators=100,objective='binary:logistic',boo
- 【技术干货】三大常见网络攻击类型详解:DDoS/XSS/中间人攻击,原理、危害及防御方案
挣扎与觉醒中的技术人
网络安全入门及实战ddosxss前端网络
1.DDoS攻击1.1什么是DDoS攻击?DDoS(DistributedDenialofService,分布式拒绝服务攻击)通过操控大量“僵尸设备”(Botnet)向目标服务器发送海量请求,耗尽服务器资源(带宽、CPU、内存),导致正常用户无法访问服务。1.2攻击原理与分类流量型攻击:如UDP洪水、ICMP洪水,通过发送大量无效数据包占用带宽。协议型攻击:如SYN洪水攻击,利用TCP三次握手漏洞
- 基于大数据架构的就业岗位推荐系统的设计与实现【java或python】—计算机毕业设计源码+LW文档
qq_375279829
大数据架构python课程设计算法
摘要随着互联网技术的迅猛发展和大数据时代的到来,就业市场日益复杂多变,求职者与招聘方之间的信息不对称问题愈发突出。为解决这一难题,本文设计并实现了一个基于大数据架构的就业岗位推荐系统。该系统通过收集、整合并分析大量求职者简历信息、企业招聘信息以及市场动态数据,运用先进的机器学习算法,为求职者提供个性化的岗位推荐服务,同时帮助企业快速定位到合适的候选人。本文将从系统设计的背景与意义、技术基础、需求分
- Java多线程编程实战:synchronized与Lock锁对比
微风灬浮尘
javajavajava入门java多线程
一、锁机制全景图:从内核态到用户态1.Java锁分类与演进史锁机制悲观锁乐观锁synchronizedReentrantLockCAS版本号机制2.锁升级全流程(synchronized底层原理)无锁→偏向锁(单线程)→轻量级锁(CAS自旋)→重量级锁(OS互斥量)锁膨胀条件:偏向锁:-XX:BiasedLockingStartupDelay=0(默认延迟4秒)重量级锁:自旋超过阈值(-XX:Pr
- 向量数据库简介
openwin_top
python编程示例系列python编程示例系列二数据库
向量数据库(VectorDatabase)是一种专门用于存储和查询向量数据的数据库系统。向量数据库通常使用高效的向量索引技术,支持基于向量相似度的查询和检索,可以应用于图像搜索、自然语言处理、推荐系统、机器学习等领域。与传统的关系型数据库不同,向量数据库通常使用基于向量的数据模型,将向量作为数据的核心表示形式。向量数据库可以存储和处理大量的向量数据,支持高效的向量相似度计算和查询。常见的向量索引技
- Ubuntu22.04安装CP2K最新版2025.1
jhonwyyc
机器学习深度学习ubuntu
CP2K教程CP2K系列之一安装文章目录CP2K教程前言一、安装依赖库1.引入库二、下载并解压缩1.下载链接2.解压缩三、安装1.安装cp2k_toolchain2.安装cp2k3.指定根目录4.修改环境变量四、测试总结前言CP2K是一款开源的第一性原理计算软件,采用Fortran98编写。近年来结合机器学习与lammps,已成为热度逐年增加的软件。但是目前使用它仍存在不少难点。本文讲解在Ubun
- 找一款好用的手机和电脑可以同步的便签备忘录
xiaocao_1023
智能手机便签备忘录
在快节奏的生活和工作中,一款好用的便签备忘录工具可以极大地提升效率。尤其是支持手机和电脑同步的便签软件,能够让我们随时随地记录灵感、管理任务。今天,就为大家推荐几款值得尝试的便签备忘录工具,重点介绍它们的功能和特点,帮助你找到最适合自己的那一款。Todo清单Todo清单是一款以任务管理为核心的便签工具,适合喜欢简洁高效的用户。它的主要功能包括:任务分类:支持创建不同的任务列表,方便分类管理。提醒功
- Azure AI Document Intelligence 使用指南
scaFHIO
azure人工智能flaskpython
AzureAIDocumentIntelligence使用指南AzureAIDocumentIntelligence(原名AzureFormRecognizer)是一项基于机器学习的服务,可以从数字或扫描PDF、图像、Office和HTML文件中提取文本(包括手写)、表格、文档结构(如标题、节标题等)和键值对。它支持多种格式,包括PDF、JPEG/JPG、PNG、BMP、TIFF、HEIF、DOC
- 鸢尾花数据集的四个特征具体是什么?
学术乙方
Python人工智能
鸢尾花数据集(IrisDataset)是机器学习领域中最经典的数据集之一,它包含150个样本,每个样本有4个特征,分别是:1.花萼长度(SepalLength)描述:花萼(花的外部绿色部分)的长度,单位为厘米。取值范围:通常为4.3cm到7.9cm。2.花萼宽度(SepalWidth)描述:花萼的宽度,单位为厘米。取值范围:通常为2.0cm到4.4cm。3.花瓣长度(PetalLength)描述:
- 【C++基础学习笔记】C++的输入输出流及缺省参数
大家好我叫张同学
深入浅出学习C++c++
我要做一个好奇宝宝,带着疑问来阅读,哼~C++如何进行输入输出?和C语言何有区别?C++的缺省参数是什么?如何理解和掌握?文章目录C++的输入&输出缺省参数缺省参数的概念缺省参数的分类1.全缺省参数2.半缺省参数:C++的输入&输出婴儿降生到这个世界上时,会以自己独特的方式向这个崭新的世界打招呼。跟新生婴儿类似,C++语言刚出来后,也算是一个新事物,作为一门新的编程语言也会有自己问候这个美好世界的
- AI提示词(Prompt)的理解和学习指南
时光不负追梦人
人工智能prompt
AI提示词(Prompt)的理解和学习指南一、什么是AI提示词?AI提示词(Prompt)是用户输入给人工智能模型的指令或问题,用于引导模型生成特定类型的回答或内容。它如同与AI沟通的“钥匙”,设计得当的提示词能显著提升输出质量。二、提示词的核心要素明确目标模糊示例:“写一篇关于环保的文章。”优化示例:“以‘垃圾分类’为主题,撰写一篇面向社区居民的科普文章,要求包含实施步骤和常见误区,字数约800
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key