- 遥感影像的切片处理
sand&wich
计算机视觉python图像处理
在遥感影像分析中,经常需要将大尺寸的影像切分成小片段,以便于进行详细的分析和处理。这种方法特别适用于机器学习和图像处理任务,如对象检测、图像分类等。以下是如何使用Python和OpenCV库来实现这一过程,同时确保每个影像片段保留正确的地理信息。准备环境首先,确保安装了必要的Python库,包括numpy、opencv-python和xml.etree.ElementTree。这些库将用于图像处理
- 遥感图像分割系统:融合空间金字塔池化(FocalModulation)改进YOLOv8
xuehaisj
YOLO人工智能计算机视觉yolov8
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义遥感图像分割是遥感技术领域中的一个重要研究方向,它的目标是将遥感图像中的不同地物或地物类别进行有效的分割和识别。随着遥感技术的不断发展和遥感图像数据的大规模获取,遥感图像分割在农业、城市规划、环境监测等领域具有广泛的应用前景。然而,由于遥感图像的特
- GIS数据处理软件:地理信息与遥感领域的智慧引擎
GeoSaaS
地理信息智慧城市数据库人工智能大数据gis
在地理信息与遥感技术的广阔天地间,数据处理软件如同一座桥接驳岸的智慧引擎,将海量的原始数据转化为决策的金矿,推动着城市规划、环境保护、灾害管理、资源开发等领域的深度变革。本文将深入解析其核心功能、技术前沿、应用实例及未来展望,探析数据处理软件如何为地理信息与遥感技术插上智慧的翅膀。数据处理软件的核心技术与功能矩阵数据清洗与格式转换:自动去除冗余杂乱码、异常值,格式标准化数据,确保后续处理的准确性与
- 枫叶的成长计划
小婷说
2019/12.23【行】毕:图分类,和鹰说清楚昨天的事,遥感复习到五十页,和白杨聊了聊昨天发生的事,买苹果未毕:c++未写,电影还没看1.找到给桌子的那个人2.早上七点起床做好标语准备买苹果啦3.遥感图分类问问黎霞小姐妹4.遥感背书二十五页5.做五道数学题嘻嘻嘻(˙︶˙)6.隔一小时发布买苹果消息7.中午和静雯吃饭(✪✪)晚上喝葵葵一起聊聊【见】今天是冬至好热闹,一大早群里的消息就把我惊醒,满屏
- [数据集][目标检测]卫星遥感舰船检测数据集VOC+YOLO格式2238张17类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2238标注数量(xml文件个数):2238标注数量(txt文件个数):2238标注类别数:17标注类别名称:[“AircraftCarrier”,“AuxiliaryShips”,“Cargo”,“Commander”
- 遥感多模态基础大模型汇总-实时更新
遥感-GIS
#遥感#图像处理深度学习#大模型#遥感大模型
本文内容来自下面链接,考虑到很多同学登录不了,故在此平台进行分享。遥感基础大模型TableofContentsModelsRemoteSensingVisionFoundationModels遥感视觉基础模型RemoteSensingVision-LanguageFoundationModels遥感视觉语言基础模型RemoteSensingGenerativeFoundationModels遥感生
- 基于Sentinel-1遥感数据的水体提取
遥感-GIS
sentinel图像处理arcgis
本文利用SAR遥感图像进行水体信息的提取,相比光学影像,SAR图像不受天气影响,在应急情况下应用最多,针对水体,在发生洪涝时一般天气都是阴雨天,云较多,光学影像质量较差,基本上都是利用SAR影像对受灾范围进行评估,故此本文重点描述SAR影像中的水体提取问题,目前应用较多的是Sentinel-1数据。本文结构:Sentinel-1数据的介绍Sentinel-1数据的预处理水体信息提取总结1Senti
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 遥感之机器学习树集成模型-CART算法之回归
遥感-GIS
遥感之机器学习树集成模型机器学习图像处理arcgis
本文在前面文章的基础上,连续介绍CART树在回归中的应用,其回归技术经常用于定量遥感领域,涉及各种地表参数含量的反演。主要分为如下几部分:回归概念描述回归树中数据集的划分准则CART回归树的原理和流程CART回归树的核心代码前面内容可参考:遥感之机器学习树模型专栏1回归概念机器学习中的回归建模以及相应的回归算法,在遥感领域对应的就是定量遥感分方向,比如水质参数反演,土壤中各种参数反演,森林各种生物
- 遥感影像-语义分割数据集:GID数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉人工智能机器学习
GID数据集:大规模高分卫星土地覆盖数据集原始数据集详情简介:GID是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。GID数据集分为大规模分类集(GID-5)和精细土地覆盖集(GID-15)两个部分。大规模分类集(GID-5)包含建筑、农田、森林、草地和水域等5个土地覆盖类别,共计150景像素级标注的Gaofen-2卫星遥感图像。其中,训练集为120景图像,验证集为
- ENVI处理遥感教程及学习资料
有梦想的炸豆皮
ENVI
转载自http://blog.sina.com.cn/s/blog_764b1e9d0102y64u.html微博ENVI-IDL技术殿堂2017年ENVI-IDL遥感应用培训班素材及录屏共享2017年在8个城市共举办8场培训班。共有来自260多个单位的630多人参加。今年培训班继续以中国遥感应用协会和我公司的名义共同主办,部分地区与地方遥感协会、高校联合主办。培训时间依然是5天,内容上形成卫星图
- 遥感影像-语义分割数据集:Vaihingen数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉
原始数据集详情Vaihingen是一个相对较小的村庄,有许多独立的建筑和小的多层建筑。KeyValue卫星类型未知覆盖区域一个相对较小的村庄,有许多独立的建筑和小的多层建筑-Vaihingen场景城市分辨率5cm数量38张单张尺寸6000*6000原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数三通道官网https://www.isprs.org/education/benchm
- 【国外比较权威的免费的卫星数据网站——USGS Earth Explorer】
学地理的小胖砸
ENVI遥感遥感影像数据地理信息科学地图学卫星影像图像处理
USGSEarthExplorer网址:https://earthexplorer.usgs.gov/简介:USGSEarthExplorer是一个全面的卫星影像数据检索工具,提供历史卫星图像的下载和访问。它拥有NASALandsat系列卫星的遥感数据,这些卫星自1972年以来积累了宝贵的数据,对于历史分析、环境监测等方面具有不可替代的作用。此外,该网站还提供免费的高程模型数据,如NASA的AST
- 【目标检测数据集汇总】各类目标检测数据集VOC+YOLO格式地址汇总
熬夜写代码的平头哥∰
数据集目标检测YOLO目标跟踪
序号项目名称下载地址1【目标检测数据集】西红柿番茄成熟度检测640张3类别VOC+YOLO格式.zip点我下载2【目标检测数据集】轮船分类检测数据集500张4类别VOC+YOLO格式.zip点我下载3【目标检测数据集】手枪gun标注检测数据集VOC+YOLO格式3400张.zip点我下载4【目标检测数据集】蚊子检测数据集295张VOC+YOLO格式可训练.zip点我下载5【目标检测数据集】遥感类军
- SWAT模型高阶十七项案例分析实践技术
科研的力量
水文地质土壤SWAT模型DEM数据土地利用水资源时空分布特征CMIP6数据处理水资源
【案例实践】:1)遥感产品和SWAT模型快速建模2)基于水文响应单元(HRU)的水资源时空分布特征3)基于自定义流域与河道的SWAT模型建模与分析4)子流域划分原理及其对模型不确定性的影响5)坡度划分原理及其对模型不确定性的影响6)DEM数据空间分辨率及其模型不确定性的影响7)DEM数据来源及其对模型不确定性的影响8)DEM数据重采样方法及其模型不确定性的影响9)土地利用遥感解译及其在模型建模中的
- 2013-2023年 中国MOD17A3H植被净初级生产力(NPP)数据
小王毕业啦
大数据人工智能大数据社科数据
中国MOD17A3H植被净初级生产力(NPP)数据是基于NASA的MODIS卫星遥感数据计算得出的,这些数据对于评估生态系统碳收支、碳循环以及气候变化的影响具有重要意义。NPP数据可以反映植被通过光合作用固定大气中二氧化碳并转化为有机物质的能力,是衡量生态系统健康状况和生产力水平的重要指标。如果NPP呈现增加趋势,可能意味着生态系统的生产力在增强,有利于碳的固定和减少温室气体排放;反之,如果NPP
- WRF DA的安装、编译及运行;WRF DA变分资料同化、WRF DA混合同化新方法;变分同化的单点试验、混合同化的单点试验等
Teacher.chenchong
大气人工智能经验分享
数值预报已经成为提升预报质量的重要手段,而模式初值质量是决定数值预报质量的重要环节。资料同化作为提高模式初值质量的有效方法,成为当前气象、海洋和大气环境和水文等诸多领域科研、业务预报中的关键科学方法。资料同化新方法的快速发展,气象常规资料、卫星遥感观测和大气环境等多种资料日益增加,为资料同化的有效应用奠定了坚实的科学基础,也导致许多新的复杂科学问题,增加了实际应用的难度。有效提升广大科研、业务人员
- <数据集>遥感船舶识别数据集<目标检测>
深度学习lover
深度学习数据集目标检测人工智能计算机视觉YOLO深度学习
数据集格式:VOC+YOLO格式图片数量:15047张标注数量(xml文件个数):15047标注数量(txt文件个数):15047标注类别数:25标注类别名称:['AircraftCarrier','AuxiliaryShips','OtherShip','OtherWarship','Destroyer','Dock','Hovercraft','Submarine','Ferry','Barg
- ArcPy批量填充大量栅格图像NoData无效值的方法
疯狂学习GIS
本文介绍基于Python中ArcPy模块,对大量栅格遥感影像文件批量进行无效值(NoData值)填充的方法。 在处理栅格图像文件时,我们经常会遇到图像中存在有无效值(即NoData值)的情况。如下图所示,这里有一个矢量面要素图层和该矢量图层范围对应的一景栅格图像;可以看到,由于该栅格图像存在无效值NoData,因此栅格图像是没有完全遮盖矢量图层的。 在一些情况下,这些无效值可能会对我们的后
- 基于遥感解译与GIS技术生态环境影响评价图件制作
宝藏口袋
ArcGIS遥感生态环境大数据arcgis数据分析
《环境影响评价技术导则生态影响》(HJ19—2022)即将实施,其中生态影响评价图件是生态影响评价报告的必要组成内容,是评价的主要依据和成果的重要表现形式,是指导生态保护措施设计的重要依据。在众多图件中,土地利用图、植被类型图、植被覆盖度图、土壤侵蚀图等专题图的制作需用到大量的遥感和GIS技术。1、掌握遥感和GIS土地利用现状解译与制图技术2、掌握遥感和GIS植被分类与制图技术3、掌握遥感和GIS
- 基于R语言遥感随机森林建模与空间预测
weixin_贾
统计语言类模型分布式
随机森林作为一种集成学习方法,在处理复杂数据分析任务中特别是遥感数据分析中表现出色。通过构建大量的决策树并引入随机性,随机森林在降低模型方差和过拟合风险方面具有显著优势。在训练过程中,使用Bootstrap抽样生成不同的训练集,并在节点分裂时随机选择特征子集,这使得模型具备了处理高维和非线性数据的能力。随机森林对噪声和异常值具有鲁棒性,其预测结果通过对多棵树的集成投票或平均获得,减少了单个异常对结
- InSAR技术大揭秘:数据处理、地形重建、形变监测一网打尽!
AIzmjl
生态insar大地测量sar卫星时间序列
合成孔径雷达干涉测量(InterferometricSyntheticApertureRadar,InSAR)技术作为一种新兴的主动式微波遥感技术,凭借其可以穿过大气层,全天时、全天候获取监测目标的形变信息等特性,已在地表形变监测、DEM生成、滑坡、火山活动、冰川运动、人工建筑物形变信息提取等多种领域展开了成功应用。InSAR作为一种新兴的空间大地测量技术,克服了传统大地测量技术需要人工野外布点、
- GEE在灾害预警中的遥感云大数据应用及GPT模型辅助分析
AIzmjl
GPT生态遥感大数据gptgee灾害预警水体湿地遥感
随着遥感技术的快速发展,云大数据在灾害、水体与湿地领域的应用日益广泛。通过遥感云大数据,我们能够实时获取灾害发生地的影像信息,为灾害预警、应急响应提供有力支持。同时,在水体与湿地监测方面,遥感云大数据也发挥着重要作用,帮助我们了解水体的分布、变化以及湿地的生态状况。近年来,GPT模型在自然语言处理领域取得了显著成果,其强大的文本生成和理解能力为遥感云大数据的应用提供了新的可能。通过将GPT模型与遥
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- 挑战杯 基于机器视觉的图像拼接算法
laafeer
python
前言图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?这是一个较为新颖的竞
- 无感
慢_简
万般小溪汇入河汉江淮澄江如练犹如一道清流时而温柔时而沁人心脾奔涛炙浪遥感如画之景,竟再无平静之意欲与江河势比美,也能会临绝顶攬日月高比天公能言矮,壮似山川不可攀举手平星辰,身动定河川心有万千阔,一叶一世界图片发自App
- GEE案例——如何sentinel-2影像利用NDWI归一化水体指数进行长时序水域分析(2015-2023年滇池为例)
此星光明
GEE案例分析前端服务器时序sentinel影像JavaScript面积
简介Sentinel-2是一颗遥感卫星,其提供的高分辨率数据可以广泛应用于环境监测、土地利用和水资源管理等领域。其中,利用归一化水体指数(NormalizedDifferenceWaterIndex,NDWI)来进行长时序水域分析是一种常见的方法。本文将介绍NDWI的定义和计算方法,并结合Sentinel-2影像的使用,详细说明如何进行长时序水域分析。首先,我们来看一下NDWI的定义和计算方法。N
- 中科星图(案例)——NDVI植被指数的计算和图例添加以及median和mosaic的影像拼接
此星光明
中科星图前端javascriptgvendvi植被指数云计算云平台
简介在GVE云平台上实现NDVI(NormalizedDifferenceVegetationIndex)植被指数的计算和图例添加,可以通过以下步骤进行:1.数据获取和准备首先,需要获取卫星影像数据,可以选择公开的遥感数据源,如Landsat、MODIS等。数据获取后,需要对数据进行预处理,包括数据格式转换、投影变换等,以确保数据的一致性和可用性。2.NDVI计算NDVI是通过计算红外波段和可见光
- 【MATLAB】赫尔默特方差分量估计算法
Lwcah
算法
微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~有意向获取代码,请转文末观看代码获取方式~1文章简介文章DOI:10.1109/TGRS.2023.3265508链接:https://ieeexplore.ieee.org/document/10097458/keywords#keywords该篇文章讲的是一种遥感反演雪深的新方法,
- 英文论文(sci)解读复现【NO.18】基于DS-YOLOv8的目标检测方法用于遥感图像
人工智能算法研究院
英文论文解读复现目标跟踪人工智能机器学习
此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行创新点代码复现,有需要的朋友可关注私信我获取。一、摘要改进的YOLOv8模型(DCN_C2f+SC_
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象