机器学习中的数据清洗与特征处理综述

目录

1、采样:

2、数据清洗

3、特征分类

4、特征处理与分析

5、特征降维

6、特征选择

7、特征监控

8、参考


1、采样:

  • 分类问题:选取正例,负例,比例确定。
  • 回归问题:评测样本的大致分布,根据目标制定采样规则;采样的方法包括随机采样,固定比例采样等方法

2、数据清洗

  • 结合业务情况进行数据的过滤
  • 去除crawler抓取,spam,作弊等数据

3、特征分类

  • 根据不同的分类方法,可以将特征分为(1)Low level特征和High level特征。(2)稳定特征与动态特征。(3)二值特征、连续特征、枚举特征。
  1. Low level特征是较低级别的特征,主要是原始特征,不需要或者需要非常少的人工处理和干预,例如文本特征中的词向量特征,图像特征中的像素点,用户id,商品id等。Low level特征一般维度比较高,不能用过于复杂的模型;High level特征是经过较复杂的处理,结合部分业务逻辑或者规则、模型得到的特征,例如人工打分,模型打分等特征,可以用于较复杂的非线性模型。Low level 比较针对性,覆盖面小。长尾样本的预测值主要受high level特征影响。 高频样本的预测值主要受low level特征影响。
  2. 稳定特征是变化频率(更新频率)较少的特征,例如评价平均分,团购单价格等,在较长的时间段内都不会发生变化;动态特征是更新变化比较频繁的特征,有些甚至是实时计算得到的特征,例如距离特征,2小时销量等特征。针对两类特征的不同可以针对性地设计特征存储和更新方式,例如对于稳定特征,可以建入索引,较长时间更新一次,如果做缓存的话,缓存的时间可以较长。对于动态特征,需要实时计算或者准实时地更新数据,如果做缓存的话,缓存过期时间需要设置的较短。
  3. 二值特征主要是0/1特征,即特征只取两种值

4、特征处理与分析

  • 在对特征进行分类后,下面介绍下对特征常用的处理方法。包括1.特征归一化,离散化,缺省值处理。2.特征降维方法。3.特征选择方法等。

a、特征归一化

归一化 不同的特征有不同的取值范围,在有些算法中,特征的取值范围会对最终的结果产生较大影响,例如二元特征的取值范围为[0,1],而距离特征取值可能是[0,正无穷),在实际使用中会对距离进行截断,这两个特征由于取值范围不一致导致了模型可能会更偏向于取值范围较大的特征,为了平衡取值范围不一致的特征,需要对特征进行归一化处理,将特征取值归一化到[0,1]区间。

常用的归一化方法包括函数归一化,通过映射函数将特征取值映射到[0,1]区间,例如最大最小值归一化方法,是一种线性的映射。还有通过非线性函数的映射,例如log函数等。2.分维度归一化,可以使用最大最小归一化方法,但是最大最小值选取的是所属类别的最大最小值,即使用的是局部最大最小值,不是全局的最大最小值。3.排序归一化,不管原来的特征取值是什么样的,将特征按大小排序,根据特征所对应的序给予一个新的值。

b、离散化

离散化 在上面介绍过连续值的取值空间可能是无穷的,为了便于表示和在模型中处理,需要对连续值特征进行离散化处理。常用的离散化方法包括等值划分和等量划分。等值划分是将特征按照值域进行均分,每一段内的取值等同处理。例如某个特征的取值范围为[0,10],我们可以将其划分为10段,[0,1),[1,2),…,[9,10)。等量划分是根据样本总数进行均分,每段等量个样本划分为1段。例如距离特征,取值范围[0,3000000],现在需要切分成10段,如果按照等比例划分的话,会发现绝大部分样本都在第1段中。使用等量划分就会避免这种问题,最终可能的切分是[0,100),[100,300),[300,500),..,[10000,3000000],前面的区间划分比较密,后面的比较稀疏。

c、缺失值处理

缺省值处理 有些特征可能因为无法采样或者没有观测值而缺失,例如距离特征,用户可能禁止获取地理位置或者获取地理位置失败,此时需要对这些特征做特殊的处理,赋予一个缺省值。缺省值如何赋予,也有很多种方法。例如单独表示,众数,平均值等。

5、特征降维

why:1. 特征维数越高,模型越容易过拟合,此时更复杂的模型就不好用。2. 相互独立的特征维数越高,在模型不变的情况下,在测试集上达到相同的效果表现所需要的训练样本的数目就越大。 3. 特征数量增加带来的训练、测试以及存储的开销都会增大。4.在某些模型中,例如基于距离计算的模型KMeans,KNN等模型,在进行距离计算时,维度过高会影响精度和性能。5.可视化分析的需要。

正是由于高维特征有如上描述的各种各样的问题,所以我们需要进行特征降维和特征选择等工作。特征降维常用的算法有PCA,LDA等。特征降维的目标是将高维空间中的数据集映射到低维空间数据,同时尽可能少地丢失信息,或者降维后的数据点尽可能地容易被区分

6、特征选择

特征选择的目标是寻找最优特征子集。特征选择能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方面,选取出真正相关的特征简化模型,协助理解数据产生的过程。

 

7、特征监控

 

在发现特征出现异常时,我们会及时采取措施,对服务进行降级处理,并联系特征数据的提供方尽快修复。对于特征数据生成过程中缺乏监控的情况也会督促做好监控,在源头解决问题。

8、参考

《elements of statistical learning》 

http://en.wikipedia.org/wiki/Supervised_learning 

http://www.cnblogs.com/heaad/archive/2011/01/02/1924088.html http://zh.wikipedia.org/zh-cn/维数灾难

 http://www.cs.waikato.ac.nz/ml/weka/ http://blog.csdn.net/lihaifeng555/article/details/4543752 

http://blog.csdn.net/abcjennifer/article/details/8002329 

http://www.cnblogs.com/leftnoteasy/archive/2011/01/08/lda-and-pca-machine-learning.html

 

 

你可能感兴趣的:(机器学习,大数据)