[Pytorch图像分类全流程实战]Task02:预训练模型预测

目录

【A】安装配置环境

【B1】预测单张图像-英文

【B2】预测单张图像-中文

【C1】预测视频文件-英文

【C2】预测视频文件-中文

【D1】预测摄像头实时画面-英文

【D2】预测摄像头实时画面-中文

总结


吐槽:谷歌的网页关闭设置真的,,,我刚完善完听课内容,不小心关闭了,直接从头开始

这次还是用了feature的GPU,Kaggle那个没那么方便,当然平时运行的项目不太大还是可以用

教学视频:同济子豪兄的个人空间-同济子豪兄个人主页-哔哩哔哩视频

使用pytorch调用其自身自带的预训练分类模型,分别对单张图像、视频文件与摄像头实时画面运行图像识别分类

大致内容如下:

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第1张图片

重点代码为B1

这里选择的学习方法是先把代码跟着打一遍(先熟悉),再看视频,能有自己的体会当然更好

【A】安装配置环境

#这里应该是选择了给镜像资源
!pip install numpy pandas matplotlib requests tqdm opencv-python pillow gc -i https://pypi.tuna.tsinghua.edu.cn/simple

#下载安装Pytorch
!pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

#下载安装 mmcv-full
!pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html

#下载中文字体文件
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/SimHei.ttf

#下载ImageNet 1000类别信息
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/meta_data/imagenet_class_index.csv

#创建目录
import os

# 存放测试图片
os.mkdir('test_img')

# 存放结果文件
os.mkdir('output')

# 下载测试图像文件 至 test_img 文件夹

!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/watermelon1.jpg -O test_img/watermelon1.jpg
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/banana1.jpg -O test_img/banana1.jpg
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/cat1.jpg -O test_img/cat1.jpg

# 哈士奇,来源:https://www.pexels.com/zh-cn/photo/2853130/
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/husky1.jpeg -O test_img/husky1.jpeg

# 猫狗,来源:https://unsplash.com/photos/ouo1hbizWwo
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/cat_dog.jpg -O test_img/cat_dog.jpg

!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/video_2.mp4 -O test_img/video_2.mp4

这部分含有Linux操作系统的知识

mmcv- full:对视频文件进行逐帧图像分类时,需将每一帧图像的中间结果保存在一个目录中,然后再将所有帧的中间结果串为一个视频


【B1】预测单张图像-英文

对单张图像文件执行前向预测

#导入基础工具包
import os

import cv2

import pandas as pd
import numpy as np

import torch

import matplotlib.pyplot as plt
%matplotlib inline

#计算设备
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

print('device', device)

#载入预训练图像分类模型
from torchvision import models

# 载入预训练图像分类模型
model = models.resnet18(pretrained=True) 
# model = models.resnet152(pretrained=True)

model = model.eval()
model = model.to(device)

#图像预处理
from torchvision import transforms

# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

##载入一张测试图像
#本部分使用的图像来自于上一节整理的数据集
img_path = 'test_img/basketball_shoe.jpeg'

# 用 pillow 载入
from PIL import Image
img_pil = Image.open(img_path)

 [Pytorch图像分类全流程实战]Task02:预训练模型预测_第2张图片

##执行图像分类预测
input_img = test_transform(img_pil) # 预处理
input_img = input_img.unsqueeze(0).to(device)

# 执行前向预测,得到所有类别的 logit 预测分数
pred_logits = model(input_img) 

import torch.nn.functional as F
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算

##预测结果分析
##各类别置信度柱状图
plt.figure(figsize=(8,4))

x = range(1000)
y = pred_softmax.cpu().detach().numpy()[0]

ax = plt.bar(x, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
plt.ylim([0, 1.0]) # y轴取值范围
# plt.bar_label(ax, fmt='%.2f', fontsize=15) # 置信度数值

plt.xlabel('Class', fontsize=20)
plt.ylabel('Confidence', fontsize=20)
plt.tick_params(labelsize=16) # 坐标文字大小
plt.title(img_path, fontsize=25)

plt.show()

 [Pytorch图像分类全流程实战]Task02:预训练模型预测_第3张图片

##取置信度最大的n个结果
n = 10
top_n = torch.topk(pred_softmax, n)

# 解析出类别
pred_ids = top_n[1].cpu().detach().numpy().squeeze()

# 解析出置信度
confs = top_n[0].cpu().detach().numpy().squeeze()

##载入lmageNet 1000图像分类标签
df = pd.read_csv('imagenet_class_index.csv')

idx_to_labels = {}
for idx, row in df.iterrows():
    idx_to_labels[row['ID']] = [row['wordnet'], row['class']]

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第4张图片

##图像分类结果写在原图上
# 用 opencv 载入原图
img_bgr = cv2.imread(img_path)

for i in range(n):
    class_name = idx_to_labels[pred_ids[i]][1] # 获取类别名称
    confidence = confs[i] * 100 # 获取置信度
    text = '{:<15} {:>.4f}'.format(class_name, confidence)
    print(text)
    
    # !图片,添加的文字,左上角坐标,字体,字号,bgr颜色,线宽
    img_bgr = cv2.putText(img_bgr, text, (25, 50 + 40 * i), cv2.FONT_HERSHEY_SIMPLEX, 1.25, (0, 0, 255), 3)

 [Pytorch图像分类全流程实战]Task02:预训练模型预测_第5张图片

 lmageNet 1000类中并不包含“西瓜”,因为形状不单一,有圆形、方形和三角形等

# 保存图像
cv2.imwrite('output/img_pred.jpg', img_bgr)

# 载入预测结果图像
img_pred = Image.open('output/img_pred.jpg')

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第6张图片

##图像和柱状图—起显示py
fig = plt.figure(figsize=(18,6))

# 绘制左图-预测图
ax1 = plt.subplot(1,2,1)
ax1.imshow(img_pred)
ax1.axis('off')

# 绘制右图-柱状图
ax2 = plt.subplot(1,2,2)
x = df['ID']
y = pred_softmax.cpu().detach().numpy()[0]
ax2.bar(x, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)

plt.ylim([0, 1.0]) # y轴取值范围
plt.title('{} Classification'.format(img_path), fontsize=30)
plt.xlabel('Class', fontsize=20)
plt.ylabel('Confidence', fontsize=20)
ax2.tick_params(labelsize=16) # 坐标文字大小

plt.tight_layout()
fig.savefig('output/预测图+柱状图.jpg')

 [Pytorch图像分类全流程实战]Task02:预训练模型预测_第7张图片

##预测结果表格输出
pred_df = pd.DataFrame() # 预测结果表格
for i in range(n):
    class_name = idx_to_labels[pred_ids[i]][1] # 获取类别名称
    label_idx = int(pred_ids[i]) # 获取类别号
    wordnet = idx_to_labels[pred_ids[i]][0] # 获取 WordNet
    confidence = confs[i] * 100 # 获取置信度
    pred_df = pred_df.append({'Class':class_name, 'Class_ID':label_idx, 'Confidence(%)':confidence, 'WordNet':wordnet}, ignore_index=True) # 预测结果表格添加一行
display(pred_df) # 展示预测结果表格

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第8张图片

【B2】预测单张图像-中文

##设置matplotlib中文字体
# # windows操作系统
# plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签 
# plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

# Linux操作系统,例如 云GPU平台:https://featurize.cn/?s=d7ce99f842414bfcaea5662a97581bd1
# 如果遇到 SSL 相关报错,重新运行本代码块即可
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/SimHei.ttf -O /environment/miniconda3/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf/SimHei.ttf
!rm -rf /home/featurize/.cache/matplotlib

import matplotlib
matplotlib.rc("font",family='SimHei') # 中文字体

##导入pillow中文字体
from PIL import ImageFont, ImageDraw
# 导入中文字体,指定字号
font = ImageFont.truetype('SimHei.ttf', 32)

##导入工具包
import os

import cv2
from PIL import Image, ImageFont, ImageDraw

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

import torch
from torchvision import models
import torch.nn.functional as F
from torchvision import transforms

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)

##预训练图像分类模型
# 载入预训练图像分类模型

model = models.resnet18(pretrained=True) 

# model = models.resnet152(pretrained=True)

model = model.eval()
model = model.to(device)

##载入lmageNet 1000图像分类中文标签
df = pd.read_csv('imagenet_class_index.csv')
idx_to_labels = {}
for idx, row in df.iterrows():
    idx_to_labels[row['ID']] = [row['wordnet'], row['Chinese']]

##图像预处理
# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize( #这里是默认值
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

##载入一张测试图像
# img_path = 'test_img/banana1.jpg'
# img_path = 'test_img/husky1.jpeg'
# img_path = 'test_img/watermelon1.jpg'
img_path = 'test_img/cat_dog.jpg'

img_pil = Image.open(img_path) # 用 pillow 载入

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第9张图片

##执行图像分类预测
input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算

##各类别置信度柱状图
plt.figure(figsize=(8,4))

x = range(1000)
y = pred_softmax.cpu().detach().numpy()[0]

ax = plt.bar(x, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
plt.ylim([0, 1.0]) # y轴取值范围
# plt.bar_label(ax, fmt='%.2f', fontsize=15) # 置信度数值

plt.title(img_path, fontsize=30)
plt.xlabel('类别', fontsize=20)
plt.ylabel('置信度', fontsize=20)
plt.tick_params(labelsize=16) # 坐标文字大小

plt.show()

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第10张图片

##取置信度最大的n个结果
n = 10
top_n = torch.topk(pred_softmax, n) # 取置信度最大的 n 个结果
pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析出类别
confs = top_n[0].cpu().detach().numpy().squeeze() # 解析出置信度

##图像分类结果写在原图上
draw = ImageDraw.Draw(img_pil)
for i in range(n):
    class_name = idx_to_labels[pred_ids[i]][1] # 获取类别名称
    confidence = confs[i] * 100 # 获取置信度
    text = '{:<15} {:>.4f}'.format(class_name, confidence)
    print(text)
    
    # 文字坐标,中文字符串,字体,rgba颜色
    draw.text((50, 100 + 50 * i), text, font=font, fill=(255, 0, 0, 1))

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第11张图片

##图像和柱状图—起显示
fig = plt.figure(figsize=(18,6))

# 绘制左图-预测图
ax1 = plt.subplot(1,2,1)
ax1.imshow(img_pil)
ax1.axis('off')

# 绘制右图-柱状图
ax2 = plt.subplot(1,2,2)
x = df['ID']
y = pred_softmax.cpu().detach().numpy()[0]
ax2.bar(x, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
plt.ylim([0, 1.0]) # y轴取值范围
plt.xlabel('类别', fontsize=20)
plt.ylabel('置信度', fontsize=20)
ax2.tick_params(labelsize=16) # 坐标文字大小

plt.title('{} 图像分类预测结果'.format(img_path), fontsize=30)

plt.tight_layout()
fig.savefig('output/预测图+柱状图.jpg')

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第12张图片

##预测结果表格输出
pred_df = pd.DataFrame() # 预测结果表格
for i in range(n):
    class_name = idx_to_labels[pred_ids[i]][1] # 获取类别名称
    label_idx = int(pred_ids[i]) # 获取类别号
    wordnet = idx_to_labels[pred_ids[i]][0] # 获取 WordNet
    confidence = confs[i] * 100 # 获取置信度
    pred_df = pred_df.append({'Class':class_name, 'Class_ID':label_idx, 'Confidence(%)':confidence, 'WordNet':wordnet}, ignore_index=True) # 预测结果表格添加一行
display(pred_df) # 展示预测结果表格

[Pytorch图像分类全流程实战]Task02:预训练模型预测_第13张图片


【C1】预测视频文件-英文

##导入工具包
import os
import time
import shutil
import tempfile
from tqdm import tqdm

import cv2
from PIL import Image

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签
import gc

import torch
import torch.nn.functional as F
from torchvision import models

import mmcv

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device:', device)

  

用了两个可视化方案

# 后端绘图,不显示,只保存
import matplotlib
matplotlib.use('Agg')

##载入预训练图像分类模型
model = models.resnet18(pretrained=True)
model = model.eval()
model = model.to(device)

##载入lmageNet 1000图像分类标签
df = pd.read_csv('imagenet_class_index.csv')
idx_to_labels = {}
for idx, row in df.iterrows():
    idx_to_labels[row['ID']] = [row['wordnet'], row['class']]

##图像预处理
from torchvision import transforms

# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

##图像分类预测函数(同上个代码教程)
def pred_single_frame(img, n=5):
    '''
    输入摄像头画面bgr-array,输出前n个图像分类预测结果的图像bgr-array
    '''
    img_bgr = img
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR 转 RGB
    img_pil = Image.fromarray(img_rgb) # array 转 pil
    input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
    pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数
    pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算
    
    top_n = torch.topk(pred_softmax, n) # 取置信度最大的 n 个结果
    pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析出类别
    confs = top_n[0].cpu().detach().numpy().squeeze() # 解析出置信度
    
    # 在图像上写字
    for i in range(n):
        class_name = idx_to_labels[pred_ids[i]][1] # 获取类别名称
        confidence = confs[i] * 100 # 获取置信度
        text = '{:<15} {:>.4f}'.format(class_name, confidence)

        # !图片,添加的文字,左上角坐标,字体,字号,bgr颜色,线宽
        img_bgr = cv2.putText(img_bgr, text, (25, 50 + 40 * i), cv2.FONT_HERSHEY_SIMPLEX, 1.25, (0, 0, 255), 3)
        
    return img_bgr, pred_softmax

##视频预测
##输入输出视频路径
input_video = 'test_img/video_3.mp4'
##可视化方案一:原始图像+预测结果文字
# 创建临时文件夹,存放每帧结果
temp_out_dir = time.strftime('%Y%m%d%H%M%S')
os.mkdir(temp_out_dir)
print('创建文件夹 {} 用于存放每帧预测结果'.format(temp_out_dir))

# 读入待预测视频
imgs = mmcv.VideoReader(input_video)

prog_bar = mmcv.ProgressBar(len(imgs))

# 对视频逐帧处理
for frame_id, img in enumerate(imgs):
    
    ## 处理单帧画面
    img, pred_softmax = pred_single_frame(img, n=5)

    # 将处理后的该帧画面图像文件,保存至 /tmp 目录下
    cv2.imwrite(f'{temp_out_dir}/{frame_id:06d}.jpg', img)
    
    prog_bar.update() # 更新进度条

# 把每一帧串成视频文件
mmcv.frames2video(temp_out_dir, 'output/output_pred.mp4', fps=imgs.fps, fourcc='mp4v')

shutil.rmtree(temp_out_dir) # 删除存放每帧画面的临时文件夹
print('删除临时文件夹', temp_out_dir)

##可视化方案二:原始图像+预测结果文字+各类别置信度柱状图
def pred_single_frame_bar(img):
    '''
    输入pred_single_frame函数输出的bgr-array,加柱状图,保存
    '''
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR 转 RGB
    fig = plt.figure(figsize=(18,6))
    # 绘制左图-视频图
    ax1 = plt.subplot(1,2,1)
    ax1.imshow(img)
    ax1.axis('off')
    # 绘制右图-柱状图
    ax2 = plt.subplot(1,2,2)
    x = range(1000)
    y = pred_softmax.cpu().detach().numpy()[0]
    ax2.bar(x, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
    plt.xlabel('类别', fontsize=20)
    plt.ylabel('置信度', fontsize=20)
    ax2.tick_params(labelsize=16) # 坐标文字大小
    plt.ylim([0, 1.0]) # y轴取值范围
    plt.xlabel('类别',fontsize=25)
    plt.ylabel('置信度',fontsize=25)
    plt.title('图像分类预测结果', fontsize=30)
    
    plt.tight_layout()
    fig.savefig(f'{temp_out_dir}/{frame_id:06d}.jpg')
    # 释放内存
    fig.clf()
    plt.close()
    gc.collect()

# 创建临时文件夹,存放每帧结果
temp_out_dir = time.strftime('%Y%m%d%H%M%S')
os.mkdir(temp_out_dir)
print('创建文件夹 {} 用于存放每帧预测结果'.format(temp_out_dir))

# 读入待预测视频
imgs = mmcv.VideoReader(input_video)

prog_bar = mmcv.ProgressBar(len(imgs))

# 对视频逐帧处理
for frame_id, img in enumerate(imgs):
    
    ## 处理单帧画面
    img, pred_softmax = pred_single_frame(img, n=5)
    img = pred_single_frame_bar(img)
    
    prog_bar.update() # 更新进度条

# 把每一帧串成视频文件
mmcv.frames2video(temp_out_dir, 'output/output_bar.mp4', fps=imgs.fps, fourcc='mp4v')

shutil.rmtree(temp_out_dir) # 删除存放每帧画面的临时文件夹
print('删除临时文件夹', temp_out_dir)


【C2】预测视频文件-中文

##设置Matplotlib中文字体
# # windows操作系统
# plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签 
# plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

# Linux操作系统,例如 云GPU平台:https://featurize.cn/?s=d7ce99f842414bfcaea5662a97581bd1
# 如果遇到 SSL 相关报错,重新运行本代码块即可
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/SimHei.ttf -O /environment/miniconda3/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf/SimHei.ttf
!rm -rf /home/featurize/.cache/matplotlib

import matplotlib
matplotlib.rc("font",family='SimHei') # 中文字体

##导入pillow中文字体
from PIL import ImageFont, ImageDraw
# 导入中文字体,指定字号
font = ImageFont.truetype('SimHei.ttf', 32)

##导入工具包
import os
import time
import shutil
import tempfile
from tqdm import tqdm

import cv2
from PIL import Image

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签
import gc

import torch
import torch.nn.functional as F
from torchvision import models

import mmcv


# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device:', device)

# 后端绘图,不显示,只保存
import matplotlib
matplotlib.use('Agg')

##载入预训练图像分类模型
model = models.resnet18(pretrained=True)
model = model.eval()
model = model.to(device)

##载入lmageNet 1000图像分类标签
df = pd.read_csv('imagenet_class_index.csv')
idx_to_labels = {}
for idx, row in df.iterrows():
    idx_to_labels[row['ID']] = [row['wordnet'], row['Chinese']]

##图像预处理
from torchvision import transforms

# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

##图像分类预测函数(同上个代码教程)
def pred_single_frame(img, n=5):
    '''
    输入摄像头画面bgr-array,输出前n个图像分类预测结果的图像bgr-array
    '''
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR 转 RGB
    img_pil = Image.fromarray(img_rgb) # array 转 pil
    input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
    pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数
    pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算
    
    top_n = torch.topk(pred_softmax, n) # 取置信度最大的 n 个结果
    pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析出类别
    confs = top_n[0].cpu().detach().numpy().squeeze() # 解析出置信度
    
    # 在图像上写字
    draw = ImageDraw.Draw(img_pil)
    # 在图像上写字
    for i in range(len(confs)):
        pred_class = idx_to_labels[pred_ids[i]][1]
        text = '{:<15} {:>.3f}'.format(pred_class, confs[i])
        # 文字坐标,中文字符串,字体,rgba颜色
        draw.text((50, 100 + 50 * i), text, font=font, fill=(255, 0, 0, 1))
        
    img_bgr = cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR) # RGB转BGR
        
    return img_bgr, pred_softmax

##视频预测
##输入输出视频路径
input_video = 'test_img/video_3.mp4'

##可视化方案一:原始图像+预测结果文字
# 创建临时文件夹,存放每帧结果
temp_out_dir = time.strftime('%Y%m%d%H%M%S')
os.mkdir(temp_out_dir)
print('创建文件夹 {} 用于存放每帧预测结果'.format(temp_out_dir))

# 读入待预测视频
imgs = mmcv.VideoReader(input_video)

prog_bar = mmcv.ProgressBar(len(imgs))

# 对视频逐帧处理
for frame_id, img in enumerate(imgs):
    
    ## 处理单帧画面
    img, pred_softmax = pred_single_frame(img, n=5)

    # 将处理后的该帧画面图像文件,保存至 /tmp 目录下
    cv2.imwrite(f'{temp_out_dir}/{frame_id:06d}.jpg', img)
    
    prog_bar.update() # 更新进度条

# 把每一帧串成视频文件
mmcv.frames2video(temp_out_dir, 'output/output_pred.mp4', fps=imgs.fps, fourcc='mp4v')

shutil.rmtree(temp_out_dir) # 删除存放每帧画面的临时文件夹
print('删除临时文件夹', temp_out_dir)

##可视化方案二:原始图像+预测结果文字+各类别置信度柱状图
def pred_single_frame_bar(img):
    '''
    输入pred_single_frame函数输出的bgr-array,加柱状图,保存
    '''
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR 转 RGB
    fig = plt.figure(figsize=(18,6))
    # 绘制左图-视频图
    ax1 = plt.subplot(1,2,1)
    ax1.imshow(img)
    ax1.axis('off')
    # 绘制右图-柱状图
    ax2 = plt.subplot(1,2,2)
    x = range(1000)
    y = pred_softmax.cpu().detach().numpy()[0]
    ax2.bar(x, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
    plt.xlabel('类别', fontsize=20)
    plt.ylabel('置信度', fontsize=20)
    ax2.tick_params(labelsize=16) # 坐标文字大小
    plt.ylim([0, 1.0]) # y轴取值范围
    plt.xlabel('类别',fontsize=25)
    plt.ylabel('置信度',fontsize=25)
    plt.title('图像分类预测结果', fontsize=30)
    
    plt.tight_layout()
    fig.savefig(f'{temp_out_dir}/{frame_id:06d}.jpg')
    # 释放内存
    fig.clf()
    plt.close()
    gc.collect()

# 创建临时文件夹,存放每帧结果
temp_out_dir = time.strftime('%Y%m%d%H%M%S')
os.mkdir(temp_out_dir)
print('创建文件夹 {} 用于存放每帧预测结果'.format(temp_out_dir))

# 读入待预测视频
imgs = mmcv.VideoReader(input_video)

prog_bar = mmcv.ProgressBar(len(imgs))

# 对视频逐帧处理
for frame_id, img in enumerate(imgs):
    
    ## 处理单帧画面
    img, pred_softmax = pred_single_frame(img, n=5)
    img = pred_single_frame_bar(img)
    
    prog_bar.update() # 更新进度条

# 把每一帧串成视频文件
mmcv.frames2video(temp_out_dir, 'output/output_bar.mp4', fps=imgs.fps, fourcc='mp4v')

shutil.rmtree(temp_out_dir) # 删除存放每帧画面的临时文件夹
print('删除临时文件夹', temp_out_dir)


【D1】预测摄像头实时画面-英文

##资源
#!pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
#!pip install --upgrade torch torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple fastNLP
##导入工具包
import os

import numpy as np
import pandas as pd

import cv2 # opencv-python
from PIL import Image # pillow
from tqdm import tqdm # 进度条

import matplotlib.pyplot as plt
%matplotlib inline

import torch
import torch.nn.functional as F
from torchvision import models

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device:', device)

##载入预训练图像分类模型
model = models.resnet18(pretrained=True)
model = model.eval()
model = model.to(device)

##载入lmageNet 1000图像分类标签
df = pd.read_csv('imagenet_class_index.csv')
idx_to_labels = {}
for idx, row in df.iterrows():
    idx_to_labels[row['ID']] = row['class']

##图像预处理
from torchvision import transforms

# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

##获取摄像头的一帧画面
# 导入opencv-python
import cv2
import time

# 获取摄像头,传入0表示获取系统默认摄像头
cap = cv2.VideoCapture(1)

# 打开cap
cap.open(0)

time.sleep(1)

success, img_bgr = cap.read()
    
# 关闭摄像头
cap.release()

# 关闭图像窗口
cv2.destroyAllWindows()

这里需要本地运行,不能在云GPU上运行,会调用不了相机

input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理

pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算

top_n = torch.topk(pred_softmax, n) # 取置信度最大的 n 个结果

for i in range(len(confs)):
    pred_class = idx_to_labels[pred_ids[i]]
    text = '{:<15} {:>.3f}'.format(pred_class, confs[i])
    
    # 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型
    img_bgr = cv2.putText(img_bgr, text, (50, 80 + 80 * i), cv2.FONT_HERSHEY_SIMPLEX, 2.5, (0, 0, 255), 5, cv2.LINE_AA)
    
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) # BGR转RGB
plt.imshow(img_rgb)
plt.show()

 [Pytorch图像分类全流程实战]Task02:预训练模型预测_第14张图片

这里用的还是老师的照片,我并没有进行全部的运行,因为总是有点小问题

##处理单帧画面的函数(英文)
# 处理帧函数
def process_frame(img):
    
    '''
    输入摄像头拍摄画面bgr-array,输出图像分类预测结果bgr-array
    '''
    
    # 记录该帧开始处理的时间
    start_time = time.time()
    
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR转RGB
    img_pil = Image.fromarray(img_rgb) # array 转 PIL
    input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
    pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数
    pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算
    
    top_n = torch.topk(pred_softmax, 5) # 取置信度最大的 n 个结果
    pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析预测类别
    confs = top_n[0].cpu().detach().numpy().squeeze() # 解析置信度
    
    # 在图像上写字
    for i in range(len(confs)):
        pred_class = idx_to_labels[pred_ids[i]]
        text = '{:<15} {:>.3f}'.format(pred_class, confs[i])

        # 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型
        img = cv2.putText(img, text, (50, 160 + 80 * i), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 4, cv2.LINE_AA)
    
    # 记录该帧处理完毕的时间
    end_time = time.time()
    # 计算每秒处理图像帧数FPS
    FPS = 1/(end_time - start_time)  
    # 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型
    img = cv2.putText(img, 'FPS  '+str(int(FPS)), (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 255), 4, cv2.LINE_AA)

    return img

##调用摄像头获取每帧(模板)
# 调用摄像头逐帧实时处理模板
# 不需修改任何代码,只需修改process_frame函数即可
# 同济子豪兄 2021-7-8

# 导入opencv-python
import cv2
import time

# 获取摄像头,传入0表示获取系统默认摄像头
cap = cv2.VideoCapture(1)

# 打开cap
cap.open(0)

# 无限循环,直到break被触发
while cap.isOpened():
    # 获取画面
    success, frame = cap.read()
    if not success:
        print('Error')
        break
    
    ## !!!处理帧函数
    frame = process_frame(frame)
    
    # 展示处理后的三通道图像
    cv2.imshow('my_window',frame)

    if cv2.waitKey(1) in [ord('q'),27]: # 按键盘上的q或esc退出(在英文输入法下)
        break
    
# 关闭摄像头
cap.release()

# 关闭图像窗口
cv2.destroyAllWindows()

【D2】预测摄像头实时画面-中文

##导入中文字体
# 下载中文字体文件
!pip install https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/SimHei.ttf

# 导入中文字体,指定字号
font = ImageFont.truetype('D:\software\SimHei.ttf', 24) #这里根据自己的情况

 从获取到单帧照片后操作不一样

input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算

n = 5
top_n = torch.topk(pred_softmax, n) # 取置信度最大的 n 个结果
pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析出类别
confs = top_n[0].cpu().detach().numpy().squeeze() # 解析出置信度

draw = ImageDraw.Draw(img_pil) 
# 在图像上写字
for i in range(len(confs)):
    pred_class = idx_to_labels[pred_ids[i]]
    text = '{:<15} {:>.3f}'.format(pred_class, confs[i])
    # 文字坐标,中文字符串,字体,rgba颜色
    draw.text((50, 100 + 50 * i), text, font=font, fill=(255, 0, 0, 1))
img = np.array(img_pil) # PIL 转 array

plt.imshow(img)
plt.show()

 [Pytorch图像分类全流程实战]Task02:预训练模型预测_第15张图片

##处理单帧画面的函数(中文)
# 处理帧函数
def process_frame(img):
    
    # 记录该帧开始处理的时间
    start_time = time.time()
    
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR转RGB
    img_pil = Image.fromarray(img_rgb) # array 转 PIL
    input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
    pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数
    pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算
    
    top_n = torch.topk(pred_softmax, 5) # 取置信度最大的 n 个结果
    pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析预测类别
    confs = top_n[0].cpu().detach().numpy().squeeze() # 解析置信度
    
    # 使用PIL绘制中文
    draw = ImageDraw.Draw(img_pil) 
    # 在图像上写字
    for i in range(len(confs)):
        pred_class = idx_to_labels[pred_ids[i]]
        text = '{:<15} {:>.3f}'.format(pred_class, confs[i])
        # 文字坐标,中文字符串,字体,bgra颜色
        draw.text((50, 100 + 50 * i),  text, font=font, fill=(255, 0, 0, 1))
    img = np.array(img_pil) # PIL 转 array
    img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # RGB转BGR
    
    # 记录该帧处理完毕的时间
    end_time = time.time()
    # 计算每秒处理图像帧数FPS
    FPS = 1/(end_time - start_time)  
    # 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型
    img = cv2.putText(img, 'FPS  '+str(int(FPS)), (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 255), 4, cv2.LINE_AA)
    return img

##调用摄像头获取每帧(模板)
# 调用摄像头逐帧实时处理模板
# 不需修改任何代码,只需修改process_frame函数即可
# 同济子豪兄 2021-7-8

# 导入opencv-python
import cv2
import time

# 获取摄像头,传入0表示获取系统默认摄像头
cap = cv2.VideoCapture(1)

# 打开cap
cap.open(0)

# 无限循环,直到break被触发
while cap.isOpened():
    # 获取画面
    success, frame = cap.read()
    if not success:
        print('Error')
        break
    
    ## !!!处理帧函数
    frame = process_frame(frame)
    
    # 展示处理后的三通道图像
    cv2.imshow('my_window',frame)

    if cv2.waitKey(1) in [ord('q'),27]: # 按键盘上的q或esc退出(在英文输入法下)
        break
    
# 关闭摄像头
cap.release()

# 关闭图像窗口
cv2.destroyAllWindows()

总结

 总结:并不适合直接用来学习Pytorch,主要面向于Pytorch的运用,视频中基本上就是将流程过一遍,讲的没有想象中那么细,可能是因为自己毕竟也有蛮多东西是本身就不懂的,然后预训练的方面也很全,图片、视频、实时画面都照顾到了,还有英文与中文的问题,总的来说还是干货满满的,有珍贵的代码模板,不过运行之后确实准确度没有想象中那么高,像人工智障。

你可能感兴趣的:(pytorch,分类,深度学习)