vins-mono初始化代码分析

大体流程

初始化主要分成2部分,第一部分是纯视觉SfM优化滑窗内的位姿,然后在融合IMU信息。
这部分代码在estimator::processImage()最后面。
vins-mono初始化代码分析_第1张图片

主函数入口:

void Estimator::processImage(const map>>> &image, const std_msgs::Header &header)

相机和imu旋转外参数的估计,分两步走:

  1. 获取最新两帧之间匹配的特征点对
vector> FeatureManager::getCorresponding(int frame_count_l, int frame_count_r)
  1. 计算相机-IMU之间的旋转
    利用旋转约束去估计
    q b k b k + 1 ⊗ q b c = q b c ⊗ q c k c k + 1 q_{b_kb_{k+1}} \otimes q_{bc} = q_{bc} \otimes q_{c_kc_{k+1}} qbkbk+1qbc=qbcqckck+1
    vins-mono初始化代码分析_第2张图片
bool CalibrationExRotation(vector> corres, Quaterniond delta_q_imu, Matrix3d &calib_ric_result)
{
 //! Step1: 滑窗內幀數加1
    frame_count++;
    //! Step2: 计算两帧之间的旋转矩阵
    // 利用帧可视化的3D点求解相邻两帧之间的旋转矩阵R_{ck, ck+1}
    Rc.push_back(solveRelativeR(corres)); //两帧图像之间的旋转通过solveRelativeR计算出本质矩阵E,再对矩阵进行分解得到图像帧之间的旋转R。
    //delta_q_imu为IMU预积分得到的旋转四元数,转换成矩阵形式存入Rimu当中。则Rimu中存放的是imu预积分得到的旋转矩阵
    Rimu.push_back(delta_q_imu.toRotationMatrix());
    //每帧IMU相对于起始帧IMU的R,ric初始化值为单位矩阵,则Rc_g中存入的第一个旋转向量为IMU的旋转矩阵
    Rc_g.push_back(ric.inverse() * delta_q_imu * ric);

    Eigen::MatrixXd A(frame_count * 4, 4);
    A.setZero();
    int sum_ok = 0;
    //遍历滑动窗口中的每一帧
    for (int i = 1; i <= frame_count; i++)
    {
        Quaterniond r1(Rc[i]);
        Quaterniond r2(Rc_g[i]);
        
        //!Step3:求取估计出的相机与IMU之间旋转的残差 公式(9)
        double angular_distance = 180 / M_PI * r1.angularDistance(r2);
        ROS_DEBUG(
            "%d %f", i, angular_distance);
        
        //! Step4:计算外点剔除的权重 Huber函数 公式(8) 
        double huber = angular_distance > 5.0 ? 5.0 / angular_distance : 1.0;
        ++sum_ok;
        Matrix4d L, R;
        
        //! Step5:求取系数矩阵        
        //! 得到相机对极关系得到的旋转q的左乘
        //四元数由q和w构成,q是一个三维向量,w为一个数值
        double w = Quaterniond(Rc[i]).w();
        Vector3d q = Quaterniond(Rc[i]).vec();
        //L为相机旋转四元数的左乘矩阵,Utility::skewSymmetric(q)计算的是q的反对称矩阵
        L.block<3, 3>(0, 0) = w * Matrix3d::Identity() + Utility::skewSymmetric(q);
        L.block<3, 1>(0, 3) = q;
        L.block<1, 3>(3, 0) = -q.transpose();
        L(3, 3) = w;
        
        //! 得到由IMU预积分得到的旋转q的右乘
        Quaterniond R_ij(Rimu[i]);
        w = R_ij.w();
        q = R_ij.vec();
        R.block<3, 3>(0, 0) = w * Matrix3d::Identity() - Utility::skewSymmetric(q);
        R.block<3, 1>(0, 3) = q;
        R.block<1, 3>(3, 0) = -q.transpose();
        R(3, 3) = w;

        A.block<4, 4>((i - 1) * 4, 0) = huber * (L - R);
    }
    
    //!Step6:通过SVD分解,求取相机与IMU的相对旋转    
    //!解为系数矩阵A的右奇异向量V中最小奇异值对应的特征向量
    JacobiSVD svd(A, ComputeFullU | ComputeFullV);
    Matrix x = svd.matrixV().col(3);
    Quaterniond estimated_R(x);
    ric = estimated_R.toRotationMatrix().inverse();
    //cout << svd.singularValues().transpose() << endl;
    //cout << ric << endl;

    //!Step7:判断对于相机与IMU的相对旋转是否满足终止条件    
    //!1.用来求解相对旋转的IMU-Camera的测量对数是否大于滑窗大小。    
    //!2.A矩阵第二小的奇异值是否大于某个阈值,使A得零空间的秩为1
    Vector3d ric_cov;
    ric_cov = svd.singularValues().tail<3>();
    if (frame_count >= WINDOW_SIZE && ric_cov(1) > 0.25)
    {
        calib_ric_result = ric;
        return true;
    }
    else
        return false;
}

计算出 q b c q_{bc} qbc后,对 b g bg bg, [ v 0 , v 1 , . . . , v n , g , s {v_0, v_1, ...,v_n, g, s} v0,v1,...,vn,g,s]进行初始化

bool Estimator::initialStructure()

vins-mono初始化代码分析_第3张图片
IMU陀螺仪bias初始化:
vins-mono初始化代码分析_第4张图片

void solveGyroscopeBias(map &all_image_frame, Vector3d* Bgs)
{
    Matrix3d A;
    Vector3d b;
    Vector3d delta_bg;
    A.setZero();
    b.setZero();
    map::iterator frame_i;
    map::iterator frame_j;
    for (frame_i = all_image_frame.begin(); next(frame_i) != all_image_frame.end(); frame_i++)
    {
        frame_j = next(frame_i);
        MatrixXd tmp_A(3, 3);
        tmp_A.setZero();
        VectorXd tmp_b(3);
        tmp_b.setZero();
        Eigen::Quaterniond q_ij(frame_i->second.R.transpose() * frame_j->second.R);
        tmp_A = frame_j->second.pre_integration->jacobian.template block<3, 3>(O_R, O_BG);
        tmp_b = 2 * (frame_j->second.pre_integration->delta_q.inverse() * q_ij).vec();
        A += tmp_A.transpose() * tmp_A;
        b += tmp_A.transpose() * tmp_b;

    }
    delta_bg = A.ldlt().solve(b);
    ROS_WARN_STREAM("gyroscope bias initial calibration " << delta_bg.transpose());

    for (int i = 0; i <= WINDOW_SIZE; i++)
        Bgs[i] += delta_bg;

    for (frame_i = all_image_frame.begin(); next(frame_i) != all_image_frame.end( ); frame_i++)
    {
        frame_j = next(frame_i);
        frame_j->second.pre_integration->repropagate(Vector3d::Zero(), Bgs[0]);
    }
}

[ v 0 , v 1 , . . . , v n , g c 0 , s {v_0, v_1, ...,v_n, g^{c0}, s} v0,v1,...,vn,gc0,s]初始化:
α b k + 1 b k = R w b k ( P b k + 1 w − P b k w − v b k w Δ t + 1 2 g w Δ t 2 ) \alpha_{b_{k+1}}^{b_k} = R_{w}^{b_k}(P_{b_{k+1}}^w - P_{b_{k}}^w - v_{b_k}^w \Delta t + \frac{1}{2}g^w \Delta t^2 ) \\ αbk+1bk=Rwbk(Pbk+1wPbkwvbkwΔt+21gwΔt2)
β b k + 1 b k = R w b k ( v b k + 1 w − v b k w + g w Δ t ) \beta_{b_{k+1}}^{b_k} = R_{w}^{b_k}(v_{b_{k+1}}^w - v_{b_k}^w + g^w \Delta t) βbk+1bk=Rwbk(vbk+1wvbkw+gwΔt)
通过平移约束 s p b k c 0 = s p c k c 0 − R b c 0 p c b sp_{b_k}^{c_0} = sp_{c_k}^{c_0} - R_b^{c_0}p_c^b spbkc0=spckc0Rbc0pcb带入上式可得:
α b k + 1 b k = R c 0 b k ( s ( P b k + 1 c 0 − P b k c 0 ) − R b k c 0 v b k b k Δ t + 1 2 g c 0 Δ t 2 ) \alpha_{b_{k+1}}^{b_k} = R_{c_0}^{b_k}(s(P_{b_{k+1}}^{c_0} - P_{b_{k}}^{c_0}) - R_{b_k}^{c_0}v_{b_k}^{b_k} \Delta t + \frac{1}{2}g^{c_0} \Delta t^2 ) \\ αbk+1bk=Rc0bk(s(Pbk+1c0Pbkc0)Rbkc0vbkbkΔt+21gc0Δt2)

β b k + 1 b k = R c 0 b k ( R b k + 1 c 0 v b k + 1 b k + 1 − R b k c 0 v b k b k + g c 0 Δ t ) \beta_{b_{k+1}}^{b_k} = R_{c_0}^{b_k}(R_{b_{k+1}}^{c_0}v_{b_{k+1}}^{b_{k+1}} - R_{b_k}^{c_0}v_{b_k}^{b_k} + g^{c_0} \Delta t) βbk+1bk=Rc0bk(Rbk+1c0vbk+1bk+1Rbkc0vbkbk+gc0Δt)
在这里插入图片描述
vins-mono初始化代码分析_第5张图片
同样将 δ β b k + 1 b k 转 为 矩 阵 形 式 \delta \beta_{b_{k+1}}^{b_k}转为矩阵形式 δβbk+1bk
vins-mono初始化代码分析_第6张图片
即: H 6 × 10 X I 10 × 1 = b 6 × 1 H^{6 \times 10}X_{I}^{10 \times 1} = b^{6 \times 1} H6×10XI10×1=b6×1
这样,可以通过Cholosky分解下面方程求解 X I X_{I} XI:
H T H X I 10 × 1 = H T b H^{T}HX_{I}^{10 \times 1} = H^{T}b HTHXI10×1=HTb

bool LinearAlignment(map &all_image_frame, Vector3d &g, VectorXd &x)
{
   int all_frame_count = all_image_frame.size();
   // 速度维度:all_frame_count * 3; 重力维度:3; scale维度:1;
   int n_state = all_frame_count * 3 + 3 + 1;

   // 构建 Ax = b 方程求解
   MatrixXd A{n_state, n_state};
   A.setZero();
   VectorXd b{n_state};
   b.setZero();

   map::iterator frame_i;
   map::iterator frame_j;
   int i = 0;
   for (frame_i = all_image_frame.begin(); next(frame_i) != all_image_frame.end(); frame_i++, i++)
   {
       frame_j = next(frame_i);

       MatrixXd tmp_A(6, 10);
       tmp_A.setZero();
       VectorXd tmp_b(6);
       tmp_b.setZero();

       double dt = frame_j->second.pre_integration->sum_dt;

       tmp_A.block<3, 3>(0, 0) = -dt * Matrix3d::Identity();
       tmp_A.block<3, 3>(0, 6) = frame_i->second.R.transpose() * dt * dt / 2 * Matrix3d::Identity();
       tmp_A.block<3, 1>(0, 9) = frame_i->second.R.transpose() * (frame_j->second.T - frame_i->second.T) / 100.0;     
       tmp_b.block<3, 1>(0, 0) = frame_j->second.pre_integration->delta_p + frame_i->second.R.transpose() * frame_j->second.R * TIC[0] - TIC[0];
       //cout << "delta_p   " << frame_j->second.pre_integration->delta_p.transpose() << endl;
       tmp_A.block<3, 3>(3, 0) = -Matrix3d::Identity();
       tmp_A.block<3, 3>(3, 3) = frame_i->second.R.transpose() * frame_j->second.R;
       tmp_A.block<3, 3>(3, 6) = frame_i->second.R.transpose() * dt * Matrix3d::Identity();
       tmp_b.block<3, 1>(3, 0) = frame_j->second.pre_integration->delta_v;
       //cout << "delta_v   " << frame_j->second.pre_integration->delta_v.transpose() << endl;

       Matrix cov_inv = Matrix::Zero();
       //cov.block<6, 6>(0, 0) = IMU_cov[i + 1];
       //MatrixXd cov_inv = cov.inverse();
       cov_inv.setIdentity();

       MatrixXd r_A = tmp_A.transpose() * cov_inv * tmp_A;
       VectorXd r_b = tmp_A.transpose() * cov_inv * tmp_b;

       A.block<6, 6>(i * 3, i * 3) += r_A.topLeftCorner<6, 6>();
       b.segment<6>(i * 3) += r_b.head<6>();

       A.bottomRightCorner<4, 4>() += r_A.bottomRightCorner<4, 4>();
       b.tail<4>() += r_b.tail<4>();

       A.block<6, 4>(i * 3, n_state - 4) += r_A.topRightCorner<6, 4>();
       A.block<4, 6>(n_state - 4, i * 3) += r_A.bottomLeftCorner<4, 6>();
   }
   A = A * 1000.0;
   b = b * 1000.0;
   x = A.ldlt().solve(b);
   double s = x(n_state - 1) / 100.0;
   ROS_DEBUG("estimated scale: %f", s);
   g = x.segment<3>(n_state - 4);
   ROS_DEBUG_STREAM(" result g     " << g.norm() << " " << g.transpose());
   if(fabs(g.norm() - G.norm()) > 1.0 || s < 0)
   {
       return false;
   }

   RefineGravity(all_image_frame, g, x);
   s = (x.tail<1>())(0) / 100.0;
   (x.tail<1>())(0) = s;
   ROS_DEBUG_STREAM(" refine     " << g.norm() << " " << g.transpose());
   if(s < 0.0 )
       return false;   
   else
       return true;
}

修正重力矢量

对应代码RefineGravity()函数
因为重力矢量的模固定,因此重力优化只有两个变量,可写成:
g ^ 3 × 1 = ∣ ∣ g ∣ ∣ g ^ ˉ 3 × 1 + w 1 b 1 3 × 1 + w 2 b 2 3 × 1 = ∣ ∣ g ∣ ∣ g ^ ˉ 3 × 1 + b 3 × 2 w 2 × 1 \hat g^{3 \times 1} = || g|| \bar{\hat g}^{3\times 1} + w_1 b_1^{3\times1} + w_2 b_2^{3\times1} = ||g||\bar{\hat g}^{3\times 1} + b^{3\times2}w^{2\times1} g^3×1=gg^ˉ3×1+w1b13×1+w2b23×1=gg^ˉ3×1+b3×2w2×1
vins-mono初始化代码分析_第7张图片

整理可得:
[ − I Δ t k 0 1 2 R c 0 b k Δ t k 2 b R c 0 b k ( p ˉ c k + 1 c 0 − p ˉ c k c 0 ) − I R c 0 b k R b k + 1 c 0 R c 0 b k Δ t k b 0 ] [ v b k b k v b k + 1 b k + 1 ω s ] = [ α b k + 1 b k − p c b + R c 0 b k R b k + 1 c 0 p c b − 1 2 R c 0 b k Δ t k 2 ∣ ∣ g ∣ ∣ g ^ ˉ β b k + 1 b k − R c 0 b k − R c 0 b k Δ t k ∣ ∣ g ∣ ∣ g ^ ˉ ] \begin{bmatrix} -I\Delta t_k& 0 & \frac{1}{2}R_{c_0}^{b_k} \Delta t_k^2b& R_{c_0}^{b_k}(\bar p_{c_{k+1}}^{c_0} - \bar p_{c_{k}}^{c_0}) \\ -I& R_{c_0}^{b_k}R_{b_{k+1}}^{c_0}& R_{c_0}^{b_k} \Delta t_kb& 0 \end{bmatrix} \begin{bmatrix} v_{b_k}^{b_k}\\v_{b_{k+1}}^{b_{k+1}} \\\omega\\s\end{bmatrix} = \begin{bmatrix} \alpha_{b_{k+1}}^{b_{k}} - p_c^b + R_{c_0}^{b_k}R_{b_{k+1}}^{c_0}p_c^b - \frac{1}{2}R_{c_0}^{b_k} \Delta t_k^2||g|| \bar{\hat g} \\ \beta_{b_{k+1}}^{b_k} - R_{c_0}^{b_k} - R_{c_0}^{b_k} \Delta t_k ||g|| \bar{\hat g}\end{bmatrix} [IΔtkI0Rc0bkRbk+1c021Rc0bkΔtk2bRc0bkΔtkbRc0bk(pˉck+1c0pˉckc0)0]vbkbkvbk+1bk+1ωs=[αbk+1bkpcb+Rc0bkRbk+1c0pcb21Rc0bkΔtk2gg^ˉβbk+1bkRc0bkRc0bkΔtkgg^ˉ]
即: H 6 × 9 X I 9 × 1 = b 6 × 1 , w 2 × 1 = [ w 1 , w 2 ] T H^{6\times9}X_{I}^{9\times1} = b^{6\times1}, w^{2\times1} = {\begin{bmatrix} {w_1, w_2}\end{bmatrix}}^T H6×9XI9×1=b6×1,w2×1=[w1,w2]T
这样,可以用Cholosky分解下面方程求解 X I X_I XI:
H T H X I = H T b H^THX_{I} = H^Tb HTHXI=HTb
这样我们就得到了在 C 0 C_0 C0系下的重力向量 g c 0 g^{c_0} gc0,通过将 g c 0 g^{c_0} gc0旋转到惯性坐标系中的Z轴方向,可以计算相机到惯性系的旋转矩阵 q c 0 w q_{c_0}^w qc0w,这样就可以将所有变量调整到惯性世界系中。

参考资料

《VINS论文推导及代码解析》崔华坤

你可能感兴趣的:(SLAM,lidar,论文解读)