ROS 学习笔记(11)—— tf 坐标系广播与监听的编程实现

tf 坐标系广播与监听的编程实现

    • 步骤一:创建新的功能包
    • 步骤二:编写 cpp 代码
    • 步骤三:配置 CMakeLists.txt 的编译规则
    • 步骤四:编译并运行

步骤一:创建新的功能包

回到/catkin_ws/src文件夹下,创建一个新的功能包,名为learning_tf

catkin_create_pkg learning_tf roscpp rospy tf turtlesim

步骤二:编写 cpp 代码

tf 广播器代码:
/catkin_ws/src/learning_tf/src/目录下新建turtle_tf_broadcaster.cpp文件,把以下代码复制进去:

/**
 * 该例程产生tf数据,并计算、发布turtle2的速度指令
 */

#include 
#include 
#include 

std::string turtle_name;

void poseCallback(const turtlesim::PoseConstPtr& msg)
{
	// 创建tf的广播器
	static tf::TransformBroadcaster br;

	// 初始化tf数据
	tf::Transform transform;
	transform.setOrigin( tf::Vector3(msg->x, msg->y, 0.0) );
	tf::Quaternion q;
	q.setRPY(0, 0, msg->theta);
	transform.setRotation(q);

	// 广播world与海龟坐标系之间的tf数据
	br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", turtle_name));
}

int main(int argc, char** argv)
{
    // 初始化ROS节点
	ros::init(argc, argv, "my_tf_broadcaster");

	// 输入参数作为海龟的名字
	if (argc != 2)
	{
		ROS_ERROR("need turtle name as argument"); 
		return -1;
	}

	turtle_name = argv[1];

	// 订阅海龟的位姿话题
	ros::NodeHandle node;
	ros::Subscriber sub = node.subscribe(turtle_name+"/pose", 10, &poseCallback);

    // 循环等待回调函数
	ros::spin();

	return 0;
};

tf 监听器代码:
/catkin_ws/src/learning_tf/src/目录下新建turtle_tf_listener.cpp文件,把以下代码复制进去:

/**
 * 该例程监听tf数据,并计算、发布turtle2的速度指令
 */

#include 
#include 
#include 
#include 

int main(int argc, char** argv)
{
	// 初始化ROS节点
	ros::init(argc, argv, "my_tf_listener");

    // 创建节点句柄
	ros::NodeHandle node;

	// 请求产生turtle2
	ros::service::waitForService("/spawn");
	ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
	turtlesim::Spawn srv;
	add_turtle.call(srv);

	// 创建发布turtle2速度控制指令的发布者
	ros::Publisher turtle_vel = node.advertise<geometry_msgs::Twist>("/turtle2/cmd_vel", 10);

	// 创建tf的监听器
	tf::TransformListener listener;

	ros::Rate rate(10.0);
	while (node.ok())
	{
		// 获取turtle1与turtle2坐标系之间的tf数据
		tf::StampedTransform transform;
		try
		{
			listener.waitForTransform("/turtle2", "/turtle1", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/turtle2", "/turtle1", ros::Time(0), transform);
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}

		// 根据turtle1与turtle2坐标系之间的位置关系,发布turtle2的速度控制指令
		geometry_msgs::Twist vel_msg;
		vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
				                        transform.getOrigin().x());
		vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
				                      pow(transform.getOrigin().y(), 2));
		turtle_vel.publish(vel_msg);

		rate.sleep();
	}
	return 0;
};

步骤三:配置 CMakeLists.txt 的编译规则

与之前一样,需要配置 CMakeLists.txt 的编译规则:

add_executable(turtle_tf_broadcaster src/turtle_tf_broadcaster.cpp)
target_link_libraries(turtle_tf_broadcaster ${catkin_LIBRARIES})

add_executable(turtle_tf_listener src/turtle_tf_listener.cpp)
target_link_libraries(turtle_tf_listener ${catkin_LIBRARIES})

ROS 学习笔记(11)—— tf 坐标系广播与监听的编程实现_第1张图片

步骤四:编译并运行

catkin_ws文件夹下,输入catkin_make命令进行编译,在/catkin_ws/devel/lib/learning_tf目录下可以看到turtle_tf_broadcaster以及turtle_tf_listener文件,说明编译成功。

依次输入以下指令运行:

roscore
rosrun turtlesim turtlesim_node
rosrun learning_tf turtle_tf_broadcaster __name:=turtle1_tf_broadcaster /turtle1
rosrun learning_tf turtle_tf_broadcaster __name:=turtle2_tf_broadcaster /turtle2
rosrun learning_tf turtle_tf_listener
rosrun turtlesim turtle_teleop_key

看到以下效果证明已经成功:
ROS 学习笔记(11)—— tf 坐标系广播与监听的编程实现_第2张图片

你可能感兴趣的:(ROS,自动驾驶,人工智能,机器学习)