PyTorch笔记 - Recurrent Neural Network(RNN) 循环神经网络

循环神经网络,RNN(Recurrent Neural Network)

  • 记忆单元分类:RNN(Recurrent Neural Network)、GRU(Gate Recurrent Unit)、LSTM(Long Short-Term Memory)
  • 模型类别:单向循环、双向循环、多层单向或双向叠加
  • 优缺点:
    • 优点:可以处理变长序列、模型大小与序列长度无关、计算量与序列长度呈线性增长、考虑历史信息、便于流式输出、权重时不变
    • 缺点:串行计算比较慢、无法获取太长的历史信息
  • 应用:AI诗歌生成、文本情感分类、词法识别、机器翻译、语音识别/合成、语言模型

PyTorch笔记 - Recurrent Neural Network(RNN) 循环神经网络_第1张图片

不同类型的RNN效果对比:

  • delay 3,预测第1帧时,使用第3帧输入的结果,模型已经看到第1~3帧,看到更多上下文,提升预测效果。

PyTorch笔记 - Recurrent Neural Network(RNN) 循环神经网络_第2张图片

诗歌生成任务:one -> many

PyTorch笔记 - Recurrent Neural Network(RNN) 循环神经网络_第3张图片

情感分类任务:many -> one

PyTorch笔记 - Recurrent Neural Network(RNN) 循环神经网络_第4张图片

词法识别:

PyTorch笔记 - Recurrent Neural Network(RNN) 循环神经网络_第5张图片

机器翻译:sequence to sequence,AED,Attention Based Encoder-Decoder

PyTorch笔记 - Recurrent Neural Network(RNN) 循环神经网络_第6张图片

PyTorch:torch.nn.RNN

  • 当前输入x(t),上一时刻h(t-1)是t-1时刻的隐含状态
  • 激活函数tanh

PyTorch笔记 - Recurrent Neural Network(RNN) 循环神经网络_第7张图片

RNN参数:

  • input_size: 输入尺寸
  • hidden_size: 隐含层尺寸
  • num_layers: 循环层数,RNN的堆叠层
  • nonlinearity: 非线性激活
  • bias: 偏置
  • batch_first: 批次在前
  • dropout: 抛弃层
  • bidirectional: 双向RNN结构,输出是2 x hidden_size,头尾都有输出

输入:input和h_0,input -> (L, N, H_in)h_0 -> (Dxnum_layer, N, H_out),默认是0填充

RNN - PyTorch函数

import torch
import torch.nn as nn
import torch.nn.functional as F

# step1 单向,单层RNN
# input_size, hidden_size, num_layers
single_rnn = nn.RNN(4, 3, 1, batch_first=True)  
input = torch.randn(1, 2, 4)  # bs * sl * fs
output, h_n = single_rnn(input)  # 不输入h_0,默认是0填充
print(f'output: {outp ut.shape}')
print(f'h_n: {h_n.shape}')  # 最后一行的值

# step2 双向,单层RNN
bidirectional_rnn = nn.RNN(4, 3, 1, batch_first=True, bidirectional=True)
bi_output, bi_h_n = bidirectional_rnn(input)
print(f'bi_output: {bi_output.shape}')  # 2个hidden_size
print(f'bi_h_n: {bi_h_n.shape}')  # 最后一行的值,双向中有两个层的状态

实现RNN和BiRNN:

bs, T = 2, 3  # batch_size,输入序列长度
input_size, hidden_size = 2, 3  # 输入特征大小,隐含层特征大小

torch.manual_seed(42)
input = torch.randn(bs, T, input_size)  # 随机初始化一个输入特征序列
h_prev = torch.zeros(bs, hidden_size)  # 初始隐含状态

# step1 调用PyTorch RNN API
rnn = nn.RNN(input_size, hidden_size, batch_first=True)
rnn_output, state_final = rnn(input, h_prev.unsqueeze(0))
# print(f'rnn_output: \n{rnn_output}')
# print(f'state_final: \n{state_final}')

# step2 手写一个rnn_forward函数, 实现RNN的计算过程
def rnn_forward(input, weight_ih, weight_hh, bias_ih, bias_hh, h_prev):
    bs, T, input_size = input.shape
    h_dim = weight_ih.shape[0]
    h_out = torch.zeros(bs, T, h_dim)
    
    for t in range(T):
        x = input[:, t, :].unsqueeze(2)  # 获取当前时刻输入特征, bs*input_size*1
        # weight在不同batch中相同
        w_ih_batch = weight_ih.unsqueeze(0).tile(bs, 1, 1)  # bs*h_dim*input_size
        w_hh_batch = weight_hh.unsqueeze(0).tile(bs, 1, 1)  # bs*h_dim*h_dim
        
        w_times_x = torch.bmm(w_ih_batch, x).squeeze(-1)  # bs*h_dim
        w_times_h = torch.bmm(w_hh_batch, h_prev.unsqueeze(2)).squeeze(-1)  # bs*h_dim
        
        h_prev = torch.tanh(w_times_x + bias_ih + w_times_h + bias_hh)
        h_out[:, t, :] = h_prev  # 更新状态
        
    return h_out, h_prev.unsqueeze(0)

# 验证一下rnn_forward的正确性
# for k, v in rnn.named_parameters():
#     print(k, v)
    
custom_rnn_output, custom_state_final = rnn_forward(input, rnn.weight_ih_l0, rnn.weight_hh_l0, 
                                                    rnn.bias_ih_l0, rnn.bias_hh_l0, h_prev)

# print(f'custom_rnn_output: \n{custom_rnn_output}')
# print(f'custom_state_final: \n{custom_state_final}')

# step3 手写一个bidrectional_rnn_forward函数,实现双向RNN的计算资源
def bidirectional_rnn_forward(input, weight_ih, weight_hh, bias_ih, bias_hh, h_prev, \
                             weight_ih_reverse, weight_hh_reverse, bias_ih_reverse, bias_hh_reverse, h_prev_reverse):
    bs, T, input_size = input.shape
    h_dim = weight_ih.shape[0]
    h_out = torch.zeros(bs, T, h_dim*2)
    
    forward_output = rnn_forward(input, weight_ih, weight_hh, bias_ih, bias_hh, h_prev)[0]  # forward layer
    backward_output = rnn_forward(torch.flip(input, dims=[1]), weight_ih_reverse, weight_hh_reverse, bias_ih_reverse, bias_hh_reverse, h_prev_reverse)[0]
    
    h_out[:, :, :h_dim] = forward_output  # 更新状态
    h_out[:, :, h_dim:] = backward_output  # 更新状态
    
    return h_out, h_out[:, -1, :].reshape((bs, 2, h_dim)).transpose(0, 1)


# 验证一下bidirectional_rnn_forward的正确性
bi_rnn = nn.RNN(input_size, hidden_size, batch_first=True, bidirectional=True)

torch.manual_seed(42)
input = torch.randn(bs, T, input_size)  # 随机初始化一个输入特征序列
h_prev = torch.zeros(2, bs, hidden_size)  # 初始隐含状态
rnn_output, state_final = bi_rnn(input, h_prev)
print(f'rnn_output: \n{rnn_output}')
print(f'state_final: \n{state_final}')

# for k, v in bi_rnn.named_parameters():
#     print(k, v)

custom_bi_rnn_output, custom_bi_state_final = \
    bidirectional_rnn_forward(input, bi_rnn.weight_ih_l0, \
           bi_rnn.weight_hh_l0, bi_rnn.bias_ih_l0, \
           bi_rnn.bias_hh_l0, h_prev[0], \
           bi_rnn.weight_ih_l0_reverse, \
           bi_rnn.weight_hh_l0_reverse, \
           bi_rnn.bias_ih_l0_reverse, \
           bi_rnn.bias_hh_l0_reverse, h_prev[1])

print(f'custom_bi_rnn_output: \n{custom_bi_rnn_output}')
print(f'custom_bi_state_final: \n{custom_bi_state_final}')

你可能感兴趣的:(深度学习,pytorch,rnn,深度学习)