Numpy——浅拷贝与深拷贝

文章目录

  • 1.浅拷贝
  • 2.copy深拷贝

1.浅拷贝

= 的赋值方式会带有关联性
比较 ‘ = ’赋值后的数是否一样

import numpy as np

a = np.arange(6)
print(a)
print('\n')
b = a
c = a
d = b
e = c
print(b)
print('\n')
print(c)
print('\n')
print(d)
print('\n')
print(e)
print('\n')

print(b is a)
print(c is b)
print(d is c)
print(e is d)

Numpy——浅拷贝与深拷贝_第1张图片
改变a中的一个数字看b、c、d、e会不会一起改变

import numpy as np

a = np.arange(6)
a[0] = 100
print(a)
print('\n')
b = a
c = a
d = b
e = c
print(b)
print('\n')
print(c)
print('\n')
print(d)
print('\n')
print(e)
print('\n')

print(b is a)
print(c is b)
print(d is c)
print(e is d)

Numpy——浅拷贝与深拷贝_第2张图片
由上面可知,“一改全改”,改变a的值,想要b、c、d、e的值也一起改变了,说明‘’=‘’赋值具有关联性

2.copy深拷贝

看代码,一看就懂。

import numpy as np

a = np.arange(6)
print(a)
print('\n')
b = a.copy()
a[2] = 1000
print(a)
print('\n')      #b对a进行了深拷贝,当a的值改变时,b的值没有改变
print(b)

Numpy——浅拷贝与深拷贝_第3张图片

你可能感兴趣的:(Numpy,深拷贝,浅拷贝,Numpy,深度学习)