# from multiprocessing.pool import ThreadPool # 线程池:使用方法和Pool一样
from multiprocessing.dummy import Pool as ThreadPool # 两种线程池都可以
from multiprocessing import Pool # 创建进程池
import numpy as np
import time
from tqdm import tqdm
# Python官网说明:
# https://docs.python.org/zh-cn/3/library/multiprocessing.html#using-a-pool-of-workers
# 几点总结:
# 1. 进程必须要在__main__函数中才能运行,线程不用
# 2. 正常使用直接map,想看速度imap;
# 3. map结果直接用,imap结果不好拿出来,写进文件就没事了
def fun1(x):
time.sleep(0.005) # 假设函数的运行时间为0.005s
return x
if __name__ == '__main__':
a = np.arange(100)
# res = [fun1(i) for i in a]
''' 多进程 '''
# 法一
with Pool(12) as p:
res2 = p.map(fun1,a)
# 法二
res = Pool(12).map(fun1,a)
print(res) # [0,1,2...99]
# 法三
res = Pool(12).imap(fun1,a) # 顺序不变
for i in tqdm(res):
pass
# 法四
res = Pool(12).imap_unordered(fun1,a) # 顺序打乱
''' 多线程 '''
with ThreadPool(12) as p:
res = p.map(fun1,a)
res = ThreadPool(12).map(fun1,a)
res = ThreadPool(12).imap(fun1,a)
for _ in tqdm(res):
pass
res = ThreadPool(12).imap_unordered(fun1,a)