- Prometheus运维六 PromQL查询语言详解及操作
安顾里
Prometheus监控类大数据kubernetes运维linux
海阔凭鱼跃,天高任鸟飞Prometheus官网:https://prometheus.io/文章目录1.什么是PromQL?2.PromQL的基本使用2.1时间序列选择器2.1.1瞬时向量选择器2.2区间向量选择器2.2.1范围向量选择器2.2.2时间位移操作2.2.3使用聚合操作2.3标量和字符串3.PromQL操作符4.内置常用函数5.HTTPAPI操作PromQL6.使用建议1.什么是Pro
- Protobuf3语言指南
R-QWERT
数据结构化与序列化protobuf
定义一个消息类型指定字段类型分配标识号指定字段规则添加更多消息类型添加注释保留标识符(Reserved)从.proto文件生成了什么?标量数值类型默认值枚举使用其他消息类型导入定义使用proto2消息类型嵌套类型更新一个消息类型AnyOneof使用OneofOneof特性向后兼容性问题映射(Maps)向后兼容性问题包(Packages)包及名称的解析定义服务JSON映射选项自定义选项生成你的类英文
- 动手学深度学习(pytorch土堆)-02TensorBoard的使用
#include<菜鸡>
深度学习深度学习pytorch人工智能
1.可视化代码使用了torch.utils.tensorboard将数据记录到TensorBoard以便可视化。具体来说,它将标量数据记录到目录logs中,使用的是SummaryWriter类。代码分解如下:SummaryWriter("logs"):初始化一个TensorBoard的写入器,日志会保存到"logs"目录。writer.add_scalar("y=x",i,i):在循环的每一次迭代
- 【鼠鼠学AI代码合集#5】线性代数
鼠鼠龙年发大财
鼠鼠学AI系列代码合集人工智能线性代数机器学习
在前面的例子中,我们已经讨论了标量的概念,并展示了如何使用代码对标量进行基本的算术运算。接下来,我将进一步说明该过程,并解释每一步的实现。标量(Scalar)的基本操作标量是只有一个元素的数值。它可以是整数、浮点数等。通过下面的Python代码,我们可以很容易地进行标量的加法、乘法、除法和指数运算。代码实现:importtorch#定义两个标量x=torch.tensor(3.0)#标量x,值为3
- 实验九 游标操作和自定义函数
LANVNAL
一.实验目的:掌握游标的声明、游标打开、标数据的提取、游标的关闭和游标的释放掌握标量值函数的定义与调用掌握内联表值函数的定义与调用掌握多语句表值函数的定义与调用二.实验内容:(所有题写到实验报告中)1.使用游标打印OrderManagement库中各订单中的总金额,要求按总金额降序排,打印格式如下:2.使用游标提取学生课程库中3-105课的前三名学生的信息和后三名学生的信息,包括学号、姓名、课程名
- 向量的叉积、点积、外积
qq_27390023
pytorchpython深度学习
向量的叉积、点积和外积是向量代数中非常重要的操作,用于描述向量间的关系。它们广泛应用于物理、计算机图形学、几何以及蛋白质结构分析等领域。下面对每个运算进行详细介绍,并通过PyTorch示例代码展示其实现。1.点积(DotProduct)点积是两个向量之间的数量积,结果是一个标量。点积用于测量两个向量的平行性或相对角度。如果两个向量的点积为零,则它们互相垂直。其中,θ是两个向量之间的夹角。PyTor
- windows C++-并行编程-将使用缩减变量的 OpenMP 循环转换为使用并发运行时
sului
c++开发语言
此示例介绍如何将使用reduction子句的OpenMPparallelforloop转换为使用并发运行时。OpenMPreduction子句允许指定一个或多个线程专用变量,这些变量受并行区域末尾的缩减操作的约束。OpenMP预定义一组缩减运算符。每个减量变量必须是标量(例如int、long和float)。OpenMP还定义了一些限制,说明如何在并行区域中使用缩减变量。并行模式库(PPL)提供co
- 【MySQL】深圳大学数据库实验二
看未来捏
深大数据库数据库mysql
目录一、实验目的二、实验要求三、实验设备四、建议的实验步骤4.1EXERCISES5GROUPBY&HAVINGGROUPBY的用法HAVING的用法综合示例小结4.2EXERCISES6SUBQUERIES.1.标量子查询(ScalarSubquery)2.行子查询(RowSubquery)3.表子查询(TableSubquery)4.相关子查询(CorrelatedSubquery)5.非相关
- pyflink中UDTF和UDF的区别
吉小雨
pyflinkpyflink
UDTF(UserDefinedTable-ValuedFunctions)和UDF(UserDefinedFunctions)在Flink和其他数据处理系统中有着明显的区别,主要体现在以下几个方面:输出类型:UDF:UDF是用户定义的标量函数。它接收一个或多个标量值作为输入,并返回一个标量值作为输出。UDTF:UDTF是用户定义的表值函数。它接收一个或多个标量值作为输入,但可以返回多行数据(即多
- PyFlink自定义函数
吉小雨
pyflinkflink
在PyFlink(ApacheFlink的PythonAPI)中,自定义函数分为三种主要类型:ScalarFunction(标量函数)、TableFunction(表函数)和AggregateFunction(聚合函数)。这些自定义函数可以在Flink的SQL和TableAPI中使用,用于扩展PyFlink的内置功能,处理自定义的计算逻辑。1.安装PyFlink在开始之前,确保你的环境中已安装了P
- ARM SIMD instruction -- fcmpe
xiaozhiwise
Assembly汇编
FCMPEFloating-pointsignalingCompare(scalar).ThisinstructioncomparesthetwoSIMD&FPsourceregistervalues,orthefirstSIMD&FPsourceregistervalueandzero.ItwritestheresulttothePSTATE.{N,Z,C,V}flags.浮点数比较(标量)。此
- OpenGL中的向量、矩阵
辉辉岁月
向量了解向量之前,先了解什么是标量标量:只有大小,例如:1,12,13等向量是有方向的标量,即不仅有大小,还有方向单位向量单位向量是长度为1的向量,向量长度通过下列公式计算向量的模的计算如果一个向量不是单位向量,可以通过单位化将其转化为单位向量,即非零向量除以向量的模,如下图所示向量点乘点乘只能发生在两个向量之间点乘得到的是两个向量之间的夹角的余弦值即cosα,范围在[-1,1]之间,是一个标量O
- 计算物理精解【3】
叶绿先锋
理论物理与应用物理线性代数计算物理
文章目录力学单位矢量基础定义矢量加法矢量加法的几何方法矢量加法的代数方法示例注意事项矢量间的关系矢量(或向量)的标量积(也称为点积、内积或数量积)性质计算两矢量之间的夹角例子步骤数值结果计算两三维矢量之间夹角的例子例子步骤数值结果通过单位矢量计算标量积矢量(向量)的向量积(也称为叉积、外积或叉乘)性质如何计算矢量向量积示例例子步骤最终结果注意单位矢量性质示例应用矢量的位移定义计算公式性质应用示例参
- Rust 学习笔记 3:一般性编程概念
JiMoKuangXiangQu
Rustrust
上一篇:Rust学习笔记2:猜数字游戏文章目录1.前言2.背景3.Rust中的一般性编程概念3.1变量及其可变性(Mutability)3.1.1变量定义3.1.2常量3.1.3变量隐藏(Shadowing)3.2基本类型3.2.1标量(scalar)类型3.2.1.1整型(IntegerTypes)3.2.1.2浮点型(Floating-PointTypes)3.2.1.3数值运算(Numeri
- 【pytorch】TensorBoard的使用
hhhhhhkkkyyy
pytorch人工智能python
TensorBoardTensorBoard是TensorFlow提供的一个可视化工具,用于实时监控、调试和可视化深度学习模型的训练过程和性能指标。虽然它是为TensorFlow设计的,但也可以与其他深度学习框架(如PyTorch)一起使用。下面是一些关于TensorBoard的详细知识和使用方法:可视化功能:Scalars(标量):用于显示训练过程中的标量数据,比如损失和准确率的变化趋势。Gra
- pytorch中的nn.MSELoss()均方误差损失函数
AndrewPerfect
深度学习python基础pytorch基础pytorch人工智能python
一、nn.MSELoss()是PyTorch中的一个损失函数,用于计算均方误差损失。均方误差损失函数通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。具体来说,nn.MSELoss()函数的输入是两个张量,即模型的真实值和预测值,输出是一个标量,表示两个张量之间的均方误差。在训练神经网络时,通常将该损失函数作为优化器的目标函数,通过反向传播算法来更新模型的参数,以最小化均方
- TensorFlow 的基本概念和使用场景。
WangLinXX
学习tensorflow人工智能python
TensorFlow是由Google开发的开源机器学习框架,用于构建和训练各种机器学习模型。它基于数据流图的概念,其中节点表示数学操作,边表示多维数组(张量)的流动。TensorFlow的基本概念包括:1.张量(Tensors):在TensorFlow中,数据以张量的形式表示。它们是多维数组,可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。2.数据流图(DataFlowGraph)
- 昇思25天学习打卡
十分钟ll
昇思25天学习打卡pythonpytorch视觉检测图像处理
@[TOC]《昇思25天学习打卡营第02天|lulul》张量Tensor张量tensor是在机器学习和深度学习中广泛应用的数据概念,张量是多维数组的泛化,能够表示标量(0维张量)、向量(1维张量)、矩阵(2维张量)及更高维的数组。张量基本用法(mindspore)data=[1,0,1,0]x_data=Tensor(data)print(x_data,x_data.shape,x_data.dt
- 【Mysql数据库基础05】子查询 where、from、exists子查询、分页查询
失舵之舟-
#mysql基础数据库mysql数据库系统子查询分页查询where子查询from子查询
where、from、exists子查询、分页查询1where子查询1.1where后面的标量子查询1.1.1having后的标量子查询1.2where后面的列子查询1.3where后面的行子查询(了解即可)2from子查询3exists子查询(相关子查询)4分页查询5联合查询6练习1where子查询1.1where后面的标量子查询1.谁的工资比Abel高?select*fromemployees
- Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习
Monyan
人工智能机器学习学习李宏毅深度学习
机器学习(MachineLearning,ML):机器具有学习的能力,即让机器具备找一个函数的能力函数不同,机器学习的类别不同:回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的PM2.5的值。分类(classification):让机器做选择题,先准备
- 应用数学与机器学习基础 - 线性代数篇
绎岚科技
机器学习深度学习机器学习线性代数
线性代数1.标量、向量、矩阵、张量学习线性代数,会涉及以下几个数学概念:标量(scalar):定义:一个标量就是一个单数的数,不同于线性代数中大多数概念会涉及到多个数。表示法:我们用斜体表示标量。标量通常赋予小写的变量名称。当我们介绍标量时,会明确它们是哪种类型的数。比如,在定义实数标量时,我们可能会说”让s∈Rs\in\mathbb{R}s∈R表示一条线的斜率“;在定义自然数标量时,我们可能会说
- TensorFlow 的基本概念和使用场景
Envyᥫᩣ
tensorflow人工智能python
TensorFlow是一个开源的机器学习框架,由Google开发和维护。它允许开发者使用图形计算的方式构建和训练机器学习模型。TensorFlow的基本概念如下:张量(Tensor):TensorFlow使用张量来表示数据。张量是多维数组,在计算图中流动,是TensorFlow的基本数据单元。张量可以是标量(0维数组)、向量(1维数组)、矩阵(2维数组),或更高维度的数组。计算图(Computat
- 《利用Python进行数据分析》 附录 A.3 广播
CCC考研
附录A高阶NumpyA.3广播广播描述了算法如何在不同形状的数组之间进行运算。它是一个强大的功能,但可能会导致混淆,即使对于有经验的用户也是如此。1.最简单的广播示例发生在将标量值与数组组合的时候(见图A-1)图A-1:简单广播注:有关此操作的说明,请参见图A-2。对行进行减均值的广播需要更小心。幸运的是,只要遵循规则,就可以在数组的任何维度上对潜在较低维度值进行广播(例如从二维数组的每一列中减去
- Pytorch-张量基础操作
小森( ﹡ˆoˆ﹡ )
实战Pytorchpython人工智能tensorflow
张量张量是一个多维数组,它是标量、向量和矩阵概念的推广。在深度学习中,张量被广泛用于表示数据和模型参数。具体来说,张量的“张”可以理解为“维度”,张量的阶或维数称为秩。例如,零阶张量是一个标量,一阶张量是一个向量,二阶张量是一个矩阵,三阶及以上的张量则可以看作是高维数组。在不同的上下文中,张量的意义可能会有所不同:数据表示:在深度学习中,张量通常用于表示数据。例如,一幅RGB图像可以表示为一个三维
- mysql子查询
小冯爱编程
mysql数据库sql
文章目录一、什么是子查询?二、查询规范三、子查询分类四、四种子查询1.标量子查询2.单行子查询3.多行子查询4.表子查询一、什么是子查询?一个查询语句嵌套在另一个查询语句内部的查询。在实际应用中,有时候一个查询语句的条件需要另一个查询语句来获取。二、查询规范1.子查询必须放在小括号中2.子查询一般放在比较操作符的右边,以提高代码的可读性。3.子查询可以出现在几乎所有的SELECT子句中。(如:SE
- Python和MATLAB和R对比敏感度函数导图
亚图跨际
算法交叉知识Python对比度检测贝叶斯自适应估计空间观察对比量化视觉皮质对比敏感度模型眼球运动偏心率对比敏感度模型
要点深度学习网络两种选择的强制选择对比度检测贝叶斯自适应估计对比敏感度函数空间观察对比目标量化视觉皮质感知差异亮度、红/绿值、蓝/黄值色彩空间改变OpenCV图像对比度对比敏感度函数模型空间对比敏感度估计眼球运动医学研究空间时间颜色偏心率对比敏感度函数模型JavaScript人眼颜色对比差异sRGB:sRGB是一种三刺激色彩模型,是Web的标准,用于大多数计算机显示器。它使用与高清电视标准Rec7
- 密码学之椭圆曲线(ECC)
零 度°
密码学密码学python
1.椭圆曲线加密ECC概述1.1ECC定义与原理椭圆曲线密码学(ECC)是一种基于椭圆曲线数学的公钥密码体系,它利用了椭圆曲线上的点构成的阿贝尔群和相应的离散对数问题来实现加密和数字签名。ECC的安全性依赖于椭圆曲线离散对数问题(ECDLP)的难解性。在ECC中,首先需要选择一个椭圆曲线和一个基点,然后生成密钥对。私钥是一个随机整数,而公钥是这个随机整数与基点的标量乘积。ECC的加密过程包括选择一
- TensorFlow
weixin_63207763
算法
TensorFlow是一个开源的机器学习框架,由Google开发和维护。它提供了一个强大的工具集,用于构建和训练各种机器学习模型,包括神经网络模型。TensorFlow的基本概念和使用场景如下:张量(Tensor):TensorFlow中的基本数据单位是张量,它是一个多维数组。张量可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。图(Graph):TensorFlow使用计算图来表示
- 深度学习pytorch——索引与切片
Echo-J
AI深度学习pytorch人工智能
indexingimporttorcha=torch.rand(4,3,28,28)#表示4张28*28的rgb图print(a[0].shape)#a[0]获得第一张图片print(a[0,0].shape)#a[0,0]获得第一张图片的r图print(a[0,0,2,4])#获得第一张图片第一个通道的一个像素点,因此得到的是一个标量selectfirst/lastN#selectfirst/l
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s