- ECCV 2024 | CC-SAM:用于超声图像分割的跨特征注意力和上下文的SAM
小白学视觉
计算机顶会论文解读人工智能ccf-aECCV计算机顶会深度学习
论文信息题目:CC-SAM:SAMwithCross-featureAttentionandContextforUltrasoundImageSegmentationCC-SAM:用于超声图像分割的跨特征注意力和上下文的SAM作者:ShreyankNGowda和DavidA.Clifton论文创新点变分注意力融合模块(VariationalAttentionFusionModule):作者提出了一
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- 【Block总结】CDFA,对比驱动特征聚合模块|即插即用,极大增强特征表达!
AI浩
Block总结计算机视觉深度学习目标检测
论文信息标题:ConDSeg:AGeneralMedicalImageSegmentationFrameworkviaContrast-DrivenFeatureEnhancement作者:MengqiLei,HaochenWu,XinhuaLv,XinWang机构:中国地质大学(武汉),百度公司发表时间:2024年12月11日会议:AAAI2025论文:https://arxiv.org/pdf
- drogon orm分页问题,req->getJsonObject()为空会导致Segmentation fault
zh7314
2024年6月22日17:14:12req->getJsonObject()获取json数据的时候,如果没有提前判断if(req->getJsonObject()==nullptr){throwstd::invalid_argument("参数json不能为空");}autojsonPtr=req->getJsonObject();官方文档:https://github.com/drogonfra
- 3DUnetCNN 项目常见问题解决方案
魏纯漫
3DUnetCNN项目常见问题解决方案3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN项目基础介绍3DUnetCNN是一个基于PyTorch的3DU-Net卷积神经网络(CNN)
- 3D U-Net CNN医学图像分割项目教程
尤辰城Agatha
3DU-NetCNN医学图像分割项目教程3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN1.项目介绍3DU-NetCNN是由Ellisdg开发的Python实现,专门用于医学图像
- 【PCL】Segmentation 模块—— 圆柱模型分割(Cylinder model segmentation)
old_power
PCL计算机视觉3Dc++
1、简介PCL(PointCloudLibrary)中的圆柱模型分割CylinderModelSegmentation是一种从点云数据中提取圆柱体模型的技术。它通过识别点云中符合圆柱体几何形状的部分,将圆柱体从其他几何形状中分离出来。1.1主要步骤预处理:对点云进行去噪、下采样等操作,以减少数据量并提升处理效率。法线估计:计算点云中每个点的法线,用于后续的模型拟合。模型拟合:使用RANSAC(随机
- RTDETR融合[WACV 2024]的MetaSeg中的gmb模块
今天炼丹了吗
RT-DETR涨点改进专栏RT-DETR
RT-DETR使用教程:RT-DETR使用教程RT-DETR改进汇总贴:RT-DETR更新汇总贴《MetaSeg:MetaFormer-basedGlobalContexts-awareNetworkforEfficientSemanticSegmentation》一、模块介绍论文链接:https://arxiv.org/abs/2408.07576代码链接:https://github.com/
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.25-2024.08.01
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM大语言模型计算机视觉视觉语言模型
文章目录~1.PayingMoreAttentiontoImage:ATraining-FreeMethodforAlleviatingHallucinationinLVLMs2.MTA-CLIP:Language-GuidedSemanticSegmentationwithMask-TextAlignment3.MarvelOVD:MarryingObjectRecognitionandVisi
- 使用3DUNet训练自己的数据集(pytorch)— 医疗影像分割
编程日记✧
智能医疗pytorch人工智能python计算机视觉图像处理深度学习健康医疗
代码:lee-zq/3DUNet-Pytorch:3DUNetimplementedwithpytorch(github.com)文章<cicek16miccai.pdf(uni-freiburg.de)3DU-Net:LearningDenseVolumetricSegmentation
- 目标检测:Cascade R-CNN: Delving into High Quality Object Detection - 2017【方法解读】
智维探境
AI与SLAM论文解析目标检测cnnCascadeR-CNN
查看新版本论文:目标检测:CascadeR-CNN:HighQualityObjectDetectionandInstanceSegmentation-2019【方法解读】目录摘要:1.引言2.相关工作3.对象检测3.1.边界框回归3.2.分类3.3.检测质量4.级联R-CNN4.1.级联边界框回归4.2.级联检测摘要:在目标检测中,需要一个交并比(IoU)阈值来定义正样本和负样本。使用低IoU阈
- 内存分页、内存分段的区别
秋夫人
java前端数据库操作系统
内存分页(Paging)和内存分段(Segmentation)是操作系统用于内存管理的两种技术。它们都旨在提高内存的使用效率,但实现方式和目的有所不同。内存分页(Paging)基本概念:内存分页是将物理内存划分为固定大小的块,称为“页”(Page),相应地,逻辑内存(即进程空间)也被划分为同样大小的“页”。操作系统维护一个页表来记录虚拟页和物理页帧之间的映射关系。目的:分页的主要目的是实现虚拟内存
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- VisionLLaMA: A Unified LLaMA Interface for Vision Tasks
liferecords
LLMllama深度学习人工智能机器学习自然语言处理算法
VisionLLaMA:AUnifiedLLaMAInterfaceforVisionTasks相关链接:arxivgithub关键字:VisionLLaMA、visiontransformers、imagegeneration、imageclassification、semanticsegmentation摘要大型语言模型(LLMs)通常基于Transformer架构来处理文本输入。例如,LLa
- 【北邮鲁鹏老师计算机视觉课程笔记】09 Segmentation 分割
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】09Segmentation分割1过分割与欠分割找一个合适的分割方法过分割:分割得太细自底向上的方法无监督的自底向上:基于像素的自顶向下:从语义的角度2人是如何感知世界的人会感觉下面的线比上面的线长人的感知:先感知部件,然后理解组合后的整体语义3分割思路临近的、颜色相似的、形状相似的、同向的、平行的、对称的、连续的、封闭的电梯上的楼层按键4把分割建模成聚类任务将像
- 云服务器frp实现http内网穿透 ssh内网穿透
Javin_Ai
系统环境搭建Linux服务器httpssh
文章目录0.下载及其相关注意事项1.frphttp和ssh穿透流程图解前言:本教程将教会您如何暴露内网的http服务到公网访问如何在远程公网ssh连接到自己家里的内网机器0.下载及其相关注意事项云服务器上使用的是frp的服务端。在安装之前首先要明确当前使用的服务器的系统信息,否则使用了不匹配的frp版本,会出现:Segmentationfault的错误。可以通过arch命令查看系统信息。archa
- MMsegmentation-随机初始化
SatVision炼金士
mmalb-炼金术python
系列文章目录文章目录系列文章目录前言一、初始化单个模块二、初始化多个模块总结前言mmlab下游分支调用权重随机初始化使用参考mmengine的说明文档mmengine支持模型初始化方法包括:BaseInit,Caffe2XavierInit,ConstantInit,KaimingInit,NormalInit,PretrainedInit,TruncNormalInit,UniformInit,
- 模型 STP(市场细分、目标市场选择、品牌定位)
图王大胜
思维模型人工智能市场分析定位战略规划企业发展
系列文章主要是分享思维模型,涉及各个领域,重在提升认知。细分找目标,定位定策略。1模型STP(市场细分、目标市场选择、品牌定位)的应用1.1某化妆品公司使用STP模型制定其市场营销策略市场细分(Segmentation):该公司通过市场调研,将消费者市场根据年龄、性别、收入、皮肤类型和消费偏好等因素进行细分。目标市场选择(Targeting):基于市场细分的结果,公司选择了年轻女性作为其主要的目标
- MIA | Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medic
CodeCognizer(代码认知者)
医学图像分割人工智能
MIA|Multi-modalcontrastivemutuallearningandpseudo-labelre-learningforsemi-supervisedmedicalimagesegmentation论文标题:Multi-modalcontrastivemutuallearningandpseudo-labelre-learningforsemi-supervisedmedical
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2023最新半监督语义分割综述 | 技术总结与展望!
自动驾驶之心
计算机视觉人工智能深度学习python机器学习
作者|派派星编辑|CVHub点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【语义分割】技术交流群后台回复【分割综述】获取语义分割、实例分割、全景分割、弱监督分割等超全学习资料!Title:ASurveyonSemi-SupervisedSemanticSegmentationPaper:https://arxiv.org/pdf/2302.09899.pd
- 第二天 寻找了三篇深度学习综述(深度学习,目标检测,图像分割)
kim_ed33
##################ImageSegmentationUsingDeepLearning:ASurvey本文梳理了172篇相关文献。本文全面回顾了撰写本文时候的文献。包括但不限于全卷积像素标记网络(FCN),编码器-解码器体系结构,多尺度以及基于金字塔的方法,递归网络,视觉注意模型和对抗环境中的生成模型;从最早的方法(阈值化,K均值聚类,分水岭)到后来(随机场,细数方法一类的)再到
- CVPR 2023: Style Projected Clustering for Domain Generalized Semantic Segmentation
结构化文摘
人工智能
我们使用以下6个分类标准对本文的研究选题进行分析:1.泛化方法:这一标准区分了不同方法对解决泛化到未见过数据的挑战的处理方式。基于正则化的方法:这些方法尝试将所有图像强制到一个类似的特征空间中,通常通过最小化域特定变化等技术来实现。虽然这促进了对具有相似特征的未见过域的泛化,但它可能会限制有效表示不同风格和特征的能力。示例包括使用域对抗训练或不变特征学习的方法。基于差异的方法:这些方法不是强制同质
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- 一个奇怪的bug
chenxiaochou
bug
class类没有写默认的构造函数debug下没问题release下直接Segmentationfault(coredumped)
- 【大厂AI课学习笔记】【1.5 AI技术领域】(7)图像分割
giszz
学习笔记人工智能学习笔记
今天学习到了图像分割。这是我学习笔记的脑图。图像分割,ImageSegmentation,就是将数字图像分割为若干个图像子区域(像素的集合,也被称为超像素),改变图像的表达方式,以更容易理解和分析。图像分割,十分重要,也十分困难,是计算机视觉中的关键步骤。图像分割分为三类:语义分割。预测出输入熟悉的每个像素点属于哪一类的标签实例分割。在语义分割的基础上,还要区分出同一类的不同个体全景分割。在实例分
- 实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能实例分割计算机视觉卷积神经网络
论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf代码链接:https://github.com/pytorch/vision摘要卷积网络是强大的视觉模型,可以产生特征层次结构。我们证明,经过端到端、像素到像素训练的卷积网络
- C语言特殊指针
lcannal
C语言基础jvm数据结构
1野指针概念:指向一块未知区域的指针,被称为野指针。野指针是危险的。危害:引用野指针,相当于访问了非法的内存,常常会导致段错误(segmentationfault)引用野指针,可能会破坏系统的关键数据,导致系统崩溃等严重后果产生原因:指针定义之后,未初始化指针所指向的内存,被系统回收指针越界如何防止:指针定义时,及时初始化绝不引用已被系统回收的内存确认所申请的内存边界,谨防越界2空指针很多情况下,
- 实例分割论文阅读之:《Mask Transfiner for High-Quality Instance Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能深度学习transformer
1.摘要两阶段和基于查询的实例分割方法取得了显著的效果。然而,它们的分段掩模仍然非常粗糙。在本文中,我们提出了一种高质量和高效的实例分割MaskTransfiner。我们的MaskTransfiner不是在规则的密集张量上操作,而是将图像区域分解并表示为四叉树。我们基于变压器的方法只处理检测到的容易出错的树节点,并并行地自我纠正它们的错误。虽然这些稀疏像素只占总数的一小部分,但它们对最终的掩模质量
- 烹饪第一个U-Net进行图像分割
小北的北
python开发语言
今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:代码:https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------Ka
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l