autogloun自然语言处理

# 准备,url:http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip
# 首先,请在此处下载数据ZIP文件,并将其放在当前目录下的目录中。data/
#
# 之后,让我们导入一些必需品。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import torch
from torch.jit import script, trace
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import csv
import random
import re
import os
import unicodedata
import codecs
from io import open
import itertools
import math


USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")
# 加载和预处理数据
# 下一步是重新格式化我们的数据文件,并将数据加载到我们可以使用的结构中。
# 康奈尔电影对话语料库是电影角色对话的丰富数据集:
# 10,292对电影角色之间的220,579次对话交流
# 9,035 个字符来自 617 部电影
# 总共 304,713 个话语
# 这个数据集庞大而多样化,语言形式、时间段、情感等差异很大。我们希望这种多样性使我们的模型对多种形式的输入和查询具有鲁棒性。
# 首先,我们将查看数据文件的一些行以查看原始格式。
corpus_name = "cornell movie-dialogs corpus"
corpus = os.path.join("data", corpus_name)

def printLines(file, n=10):
    with open(file, 'rb') as datafile:
        lines = datafile.readlines()
    for line in lines[:n]:
        print(line)
print(os.path.join(corpus, "movie_lines.txt"))
printLines(os.path.join(corpus, "movie_lines.txt"))

# 创建格式化数据文件
# 为方便起见,我们将创建一个格式良好的数据文件,其中每行都包含一个以制表符分隔的查询句和一个响应句对。
#
# 以下函数有助于解析原始movie_lines.txt数据文件。
#
# loadLines将文件的每一行拆分为字段字典(行 ID、字符 ID、影片 ID、字符、文本)
# loadConversations根据movie_conversations.txt将行的字段分组到对话中loadLines
# extractSentencePairs从对话中提取成对的句子
# Splits each line of the file into a dictionary of fields
def loadLines(fileName, fields):
    lines = {}
    with open(fileName, 'r', encoding='iso-8859-1') as f:
        for line in f:
            values = line.split(" +++$+++ ")
            # Extract fields
            lineObj = {}
            for i, field in enumerate(fields):
                lineObj[field] = values[i]
            lines[lineObj['lineID']] = lineObj
    return lines


# Groups fields of lines from `loadLines` into conversations based on *movie_conversations.txt*
def loadConversations(fileName, lines, fields):
    conversations = []
    with open(fileName, 'r', encoding='iso-8859-1') as f:
        for line in f:
            values = line.split(" +++$+++ ")
            # Extract fields
            convObj = {}
            for i, field in enumerate(fields):
                convObj[field] = values[i]
            # Convert string to list (convObj["utteranceIDs"] == "['L598485', 'L598486', ...]")
            utterance_id_pattern = re.compile('L[0-9]+')
            lineIds = utterance_id_pattern.findall(convObj["utteranceIDs"])
            # Reassemble lines
            convObj["lines"] = []
            for lineId in lineIds:
                convObj["lines"].append(lines[lineId])
            conversations.append(convObj)
    return conversations


# Extracts pairs of sentences from conversations
def extractSentencePairs(conversations):
    qa_pairs = []
    for conversation in conversations:
        # Iterate over all the lines of the conversation
        for i in range(len(conversation["lines"]) - 1):  # We ignore the last line (no answer for it)
            inputLine = conversation["lines"][i]["text"].strip()
            targetLine = conversation["lines"][i+1]["text"].strip()
            # Filter wrong samples (if one of the lists is empty)
            if inputLine and targetLine:
                qa_pairs.append([inputLine, targetLine])
    return qa_pairs

# 现在,我们将调用这些函数并创建文件。我们称之为formatted_movie_lines.txt。
# Define path to new file
datafile = os.path.join(corpus, "formatted_movie_lines.txt")

delimiter = '\t'
# Unescape the delimiter
delimiter = str(codecs.decode(delimiter, "unicode_escape"))

# Initialize lines dict, conversations list, and field ids
lines = {}
conversations = []
MOVIE_LINES_FIELDS = ["lineID", "characterID", "movieID", "character", "text"]
MOVIE_CONVERSATIONS_FIELDS = ["character1ID", "character2ID", "movieID", "utteranceIDs"]

# Load lines and process conversations
print("\nProcessing corpus...")
lines = loadLines(os.path.join(corpus, "movie_lines.txt"), MOVIE_LINES_FIELDS)
print("\nLoading conversations...")
conversations = loadConversations(os.path.join(corpus, "movie_conversations.txt"),
                                  lines, MOVIE_CONVERSATIONS_FIELDS)

# Write new csv file
print("\nWriting newly formatted file...")
with open(datafile, 'w', encoding='utf-8') as outputfile:
    writer = csv.writer(outputfile, delimiter=delimiter, lineterminator='\n')
    for pair in extractSentencePairs(conversations):
        writer.writerow(pair)

# Print a sample of lines
print("\nSample lines from file:")
printLines(datafile)

# 加载和修剪数据
# 我们的下一个任务是创建一个词汇表,并将查询/响应句子对加载到内存中。
# 请注意,我们正在处理的词序列,它们没有到离散数值空间的隐式映射。因此,我们必须通过将数据集中遇到的每个唯一单词映射到索引值来创建一个。
# 为此,我们定义了一个类,它保持从单词到索引的映射,索引到单词的反向映射,每个单词的计数和总字数。该类提供了将单词添加到词汇表 ()、添加句子 () 中的所有单词以及修剪不常看到的单词 () 的方法。稍后将详细介绍修剪。
# Default word tokens
PAD_token = 0  # Used for padding short sentences
SOS_token = 1  # Start-of-sentence token
EOS_token = 2  # End-of-sentence token

class Voc:
    def __init__(self, name):
        self.name = name
        self.trimmed = False
        self.word2index = {}
        self.word2count = {}
        self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
        self.num_words = 3  # Count SOS, EOS, PAD

    def addSentence(self, sentence):
        for word in sentence.split(' '):
            self.addWord(word)

    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.num_words
            self.word2count[word] = 1
            self.index2word[self.num_words] = word
            self.num_words += 1
        else:
            self.word2count[word] += 1

    # Remove words below a certain count threshold
    def trim(self, min_count):
        if self.trimmed:
            return
        self.trimmed = True

        keep_words = []

        for k, v in self.word2count.items():
            if v >= min_count:
                keep_words.append(k)

        print('keep_words {} / {} = {:.4f}'.format(
            len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index)
        ))

        # Reinitialize dictionaries
        self.word2index = {}
        self.word2count = {}
        self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
        self.num_words = 3 # Count default tokens

        for word in keep_words:
            self.addWord(word)

# 现在,我们可以组合词汇和查询/响应句子对。在准备使用此数据之前,必须执行一些预处理。
# 首先,我们必须使用 将 Unicode 字符串转换为 ASCII。接下来,我们应该将所有字母转换为小写字母,并修剪除基本标点符号()之外的所有非字母字符。最后,为了帮助训练收敛,我们将过滤掉长度大于阈值()的句子。
MAX_LENGTH = 10  # Maximum sentence length to consider

# Turn a Unicode string to plain ASCII, thanks to
# https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )

# Lowercase, trim, and remove non-letter characters
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    s = re.sub(r"\s+", r" ", s).strip()
    return s

# Read query/response pairs and return a voc object
def readVocs(datafile, corpus_name):
    print("Reading lines...")
    # Read the file and split into lines
    lines = open(datafile, encoding='utf-8').\
        read().strip().split('\n')
    # Split every line into pairs and normalize
    pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]
    voc = Voc(corpus_name)
    return voc, pairs

# Returns True iff both sentences in a pair 'p' are under the MAX_LENGTH threshold
def filterPair(p):
    # Input sequences need to preserve the last word for EOS token
    return len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH

# Filter pairs using filterPair condition
def filterPairs(pairs):
    return [pair for pair in pairs if filterPair(pair)]

# Using the functions defined above, return a populated voc object and pairs list
def loadPrepareData(corpus, corpus_name, datafile, save_dir):
    print("Start preparing training data ...")
    voc, pairs = readVocs(datafile, corpus_name)
    print("Read {!s} sentence pairs".format(len(pairs)))
    pairs = filterPairs(pairs)
    print("Trimmed to {!s} sentence pairs".format(len(pairs)))
    print("Counting words...")
    for pair in pairs:
        voc.addSentence(pair[0])
        voc.addSentence(pair[1])
    print("Counted words:", voc.num_words)
    return voc, pairs


# Load/Assemble voc and pairs
save_dir = os.path.join("data", "save")
voc, pairs = loadPrepareData(corpus, corpus_name, datafile, save_dir)
# Print some pairs to validate
print("\npairs:")
for pair in pairs[:10]:
    print(pair)


MIN_COUNT = 3    # Minimum word count threshold for trimming

def trimRareWords(voc, pairs, MIN_COUNT):
    # Trim words used under the MIN_COUNT from the voc
    voc.trim(MIN_COUNT)
    # Filter out pairs with trimmed words
    keep_pairs = []
    for pair in pairs:
        input_sentence = pair[0]
        output_sentence = pair[1]
        keep_input = True
        keep_output = True
        # Check input sentence
        for word in input_sentence.split(' '):
            if word not in voc.word2index:
                keep_input = False
                break
        # Check output sentence
        for word in output_sentence.split(' '):
            if word not in voc.word2index:
                keep_output = False
                break

        # Only keep pairs that do not contain trimmed word(s) in their input or output sentence
        if keep_input and keep_output:
            keep_pairs.append(pair)

    print("Trimmed from {} pairs to {}, {:.4f} of total".format(len(pairs), len(keep_pairs), len(keep_pairs) / len(pairs)))
    return keep_pairs


# Trim voc and pairs
pairs = trimRareWords(voc, pairs, MIN_COUNT)


def indexesFromSentence(voc, sentence):
    return [voc.word2index[word] for word in sentence.split(' ')] + [EOS_token]


def zeroPadding(l, fillvalue=PAD_token):
    return list(itertools.zip_longest(*l, fillvalue=fillvalue))

def binaryMatrix(l, value=PAD_token):
    m = []
    for i, seq in enumerate(l):
        m.append([])
        for token in seq:
            if token == PAD_token:
                m[i].append(0)
            else:
                m[i].append(1)
    return m

# Returns padded input sequence tensor and lengths
def inputVar(l, voc):
    indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
    lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
    padList = zeroPadding(indexes_batch)
    padVar = torch.LongTensor(padList)
    return padVar, lengths

# Returns padded target sequence tensor, padding mask, and max target length
def outputVar(l, voc):
    indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
    max_target_len = max([len(indexes) for indexes in indexes_batch])
    padList = zeroPadding(indexes_batch)
    mask = binaryMatrix(padList)
    mask = torch.BoolTensor(mask)
    padVar = torch.LongTensor(padList)
    return padVar, mask, max_target_len

# Returns all items for a given batch of pairs
def batch2TrainData(voc, pair_batch):
    pair_batch.sort(key=lambda x: len(x[0].split(" ")), reverse=True)
    input_batch, output_batch = [], []
    for pair in pair_batch:
        input_batch.append(pair[0])
        output_batch.append(pair[1])
    inp, lengths = inputVar(input_batch, voc)
    output, mask, max_target_len = outputVar(output_batch, voc)
    return inp, lengths, output, mask, max_target_len


# Example for validation
small_batch_size = 5
batches = batch2TrainData(voc, [random.choice(pairs) for _ in range(small_batch_size)])
input_variable, lengths, target_variable, mask, max_target_len = batches

print("input_variable:", input_variable)
print("lengths:", lengths)
print("target_variable:", target_variable)
print("mask:", mask)
print("max_target_len:", max_target_len)

class EncoderRNN(nn.Module):
    def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
        super(EncoderRNN, self).__init__()
        self.n_layers = n_layers
        self.hidden_size = hidden_size
        self.embedding = embedding

        # Initialize GRU; the input_size and hidden_size params are both set to 'hidden_size'
        #   because our input size is a word embedding with number of features == hidden_size
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
                          dropout=(0 if n_layers == 1 else dropout), bidirectional=True)

    def forward(self, input_seq, input_lengths, hidden=None):
        # Convert word indexes to embeddings
        embedded = self.embedding(input_seq)
        # Pack padded batch of sequences for RNN module
        packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
        # Forward pass through GRU
        outputs, hidden = self.gru(packed, hidden)
        # Unpack padding
        outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs)
        # Sum bidirectional GRU outputs
        outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:]
        # Return output and final hidden state
        return outputs, hidden

# Luong attention layer
class Attn(nn.Module):
    def __init__(self, method, hidden_size):
        super(Attn, self).__init__()
        self.method = method
        if self.method not in ['dot', 'general', 'concat']:
            raise ValueError(self.method, "is not an appropriate attention method.")
        self.hidden_size = hidden_size
        if self.method == 'general':
            self.attn = nn.Linear(self.hidden_size, hidden_size)
        elif self.method == 'concat':
            self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
            self.v = nn.Parameter(torch.FloatTensor(hidden_size))

    def dot_score(self, hidden, encoder_output):
        return torch.sum(hidden * encoder_output, dim=2)

    def general_score(self, hidden, encoder_output):
        energy = self.attn(encoder_output)
        return torch.sum(hidden * energy, dim=2)

    def concat_score(self, hidden, encoder_output):
        energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
        return torch.sum(self.v * energy, dim=2)

    def forward(self, hidden, encoder_outputs):
        # Calculate the attention weights (energies) based on the given method
        if self.method == 'general':
            attn_energies = self.general_score(hidden, encoder_outputs)
        elif self.method == 'concat':
            attn_energies = self.concat_score(hidden, encoder_outputs)
        elif self.method == 'dot':
            attn_energies = self.dot_score(hidden, encoder_outputs)

        # Transpose max_length and batch_size dimensions
        attn_energies = attn_energies.t()

        # Return the softmax normalized probability scores (with added dimension)
        return F.softmax(attn_energies, dim=1).unsqueeze(1)


class LuongAttnDecoderRNN(nn.Module):
    def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
        super(LuongAttnDecoderRNN, self).__init__()

        # Keep for reference
        self.attn_model = attn_model
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.n_layers = n_layers
        self.dropout = dropout

        # Define layers
        self.embedding = embedding
        self.embedding_dropout = nn.Dropout(dropout)
        self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
        self.concat = nn.Linear(hidden_size * 2, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)

        self.attn = Attn(attn_model, hidden_size)

    def forward(self, input_step, last_hidden, encoder_outputs):
        # Note: we run this one step (word) at a time
        # Get embedding of current input word
        embedded = self.embedding(input_step)
        embedded = self.embedding_dropout(embedded)
        # Forward through unidirectional GRU
        rnn_output, hidden = self.gru(embedded, last_hidden)
        # Calculate attention weights from the current GRU output
        attn_weights = self.attn(rnn_output, encoder_outputs)
        # Multiply attention weights to encoder outputs to get new "weighted sum" context vector
        context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
        # Concatenate weighted context vector and GRU output using Luong eq. 5
        rnn_output = rnn_output.squeeze(0)
        context = context.squeeze(1)
        concat_input = torch.cat((rnn_output, context), 1)
        concat_output = torch.tanh(self.concat(concat_input))
        # Predict next word using Luong eq. 6
        output = self.out(concat_output)
        output = F.softmax(output, dim=1)
        # Return output and final hidden state
        return output, hidden


def maskNLLLoss(inp, target, mask):
    nTotal = mask.sum()
    crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
    loss = crossEntropy.masked_select(mask).mean()
    loss = loss.to(device)
    return loss, nTotal.item()

def train(input_variable, lengths, target_variable, mask, max_target_len, encoder, decoder, embedding,
          encoder_optimizer, decoder_optimizer, batch_size, clip, max_length=MAX_LENGTH):

    # Zero gradients
    encoder_optimizer.zero_grad()
    decoder_optimizer.zero_grad()

    # Set device options
    input_variable = input_variable.to(device)
    target_variable = target_variable.to(device)
    mask = mask.to(device)
    # Lengths for rnn packing should always be on the cpu
    lengths = lengths.to("cpu")

    # Initialize variables
    loss = 0
    print_losses = []
    n_totals = 0

    # Forward pass through encoder
    encoder_outputs, encoder_hidden = encoder(input_variable, lengths)

    # Create initial decoder input (start with SOS tokens for each sentence)
    decoder_input = torch.LongTensor([[SOS_token for _ in range(batch_size)]])
    decoder_input = decoder_input.to(device)

    # Set initial decoder hidden state to the encoder's final hidden state
    decoder_hidden = encoder_hidden[:decoder.n_layers]

    # Determine if we are using teacher forcing this iteration
    use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False

    # Forward batch of sequences through decoder one time step at a time
    if use_teacher_forcing:
        for t in range(max_target_len):
            decoder_output, decoder_hidden = decoder(
                decoder_input, decoder_hidden, encoder_outputs
            )
            # Teacher forcing: next input is current target
            decoder_input = target_variable[t].view(1, -1)
            # Calculate and accumulate loss
            mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
            loss += mask_loss
            print_losses.append(mask_loss.item() * nTotal)
            n_totals += nTotal
    else:
        for t in range(max_target_len):
            decoder_output, decoder_hidden = decoder(
                decoder_input, decoder_hidden, encoder_outputs
            )
            # No teacher forcing: next input is decoder's own current output
            _, topi = decoder_output.topk(1)
            decoder_input = torch.LongTensor([[topi[i][0] for i in range(batch_size)]])
            decoder_input = decoder_input.to(device)
            # Calculate and accumulate loss
            mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
            loss += mask_loss
            print_losses.append(mask_loss.item() * nTotal)
            n_totals += nTotal

    # Perform backpropatation
    loss.backward()

    # Clip gradients: gradients are modified in place
    _ = nn.utils.clip_grad_norm_(encoder.parameters(), clip)
    _ = nn.utils.clip_grad_norm_(decoder.parameters(), clip)

    # Adjust model weights
    encoder_optimizer.step()
    decoder_optimizer.step()

    return sum(print_losses) / n_totals

def trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size, print_every, save_every, clip, corpus_name, loadFilename):

    # Load batches for each iteration
    training_batches = [batch2TrainData(voc, [random.choice(pairs) for _ in range(batch_size)])
                      for _ in range(n_iteration)]

    # Initializations
    print('Initializing ...')
    start_iteration = 1
    print_loss = 0
    if loadFilename:
        start_iteration = checkpoint['iteration'] + 1

    # Training loop
    print("Training...")
    for iteration in range(start_iteration, n_iteration + 1):
        training_batch = training_batches[iteration - 1]
        # Extract fields from batch
        input_variable, lengths, target_variable, mask, max_target_len = training_batch

        # Run a training iteration with batch
        loss = train(input_variable, lengths, target_variable, mask, max_target_len, encoder,
                     decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip)
        print_loss += loss

        # Print progress
        if iteration % print_every == 0:
            print_loss_avg = print_loss / print_every
            print("Iteration: {}; Percent complete: {:.1f}%; Average loss: {:.4f}".format(iteration, iteration / n_iteration * 100, print_loss_avg))
            print_loss = 0

        # Save checkpoint
        if (iteration % save_every == 0):
            directory = os.path.join(save_dir, model_name, corpus_name, '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size))
            if not os.path.exists(directory):
                os.makedirs(directory)
            torch.save({
                'iteration': iteration,
                'en': encoder.state_dict(),
                'de': decoder.state_dict(),
                'en_opt': encoder_optimizer.state_dict(),
                'de_opt': decoder_optimizer.state_dict(),
                'loss': loss,
                'voc_dict': voc.__dict__,
                'embedding': embedding.state_dict()
            }, os.path.join(directory, '{}_{}.tar'.format(iteration, 'checkpoint')))


class GreedySearchDecoder(nn.Module):
    def __init__(self, encoder, decoder):
        super(GreedySearchDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, input_seq, input_length, max_length):
        # Forward input through encoder model
        encoder_outputs, encoder_hidden = self.encoder(input_seq, input_length)
        # Prepare encoder's final hidden layer to be first hidden input to the decoder
        decoder_hidden = encoder_hidden[:decoder.n_layers]
        # Initialize decoder input with SOS_token
        decoder_input = torch.ones(1, 1, device=device, dtype=torch.long) * SOS_token
        # Initialize tensors to append decoded words to
        all_tokens = torch.zeros([0], device=device, dtype=torch.long)
        all_scores = torch.zeros([0], device=device)
        # Iteratively decode one word token at a time
        for _ in range(max_length):
            # Forward pass through decoder
            decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs)
            # Obtain most likely word token and its softmax score
            decoder_scores, decoder_input = torch.max(decoder_output, dim=1)
            # Record token and score
            all_tokens = torch.cat((all_tokens, decoder_input), dim=0)
            all_scores = torch.cat((all_scores, decoder_scores), dim=0)
            # Prepare current token to be next decoder input (add a dimension)
            decoder_input = torch.unsqueeze(decoder_input, 0)
        # Return collections of word tokens and scores
        return all_tokens, all_scores

def evaluate(encoder, decoder, searcher, voc, sentence, max_length=MAX_LENGTH):
    ### Format input sentence as a batch
    # words -> indexes
    indexes_batch = [indexesFromSentence(voc, sentence)]
    # Create lengths tensor
    lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
    # Transpose dimensions of batch to match models' expectations
    input_batch = torch.LongTensor(indexes_batch).transpose(0, 1)
    # Use appropriate device
    input_batch = input_batch.to(device)
    lengths = lengths.to("cpu")
    # Decode sentence with searcher
    tokens, scores = searcher(input_batch, lengths, max_length)
    # indexes -> words
    decoded_words = [voc.index2word[token.item()] for token in tokens]
    return decoded_words


def evaluateInput(encoder, decoder, searcher, voc):
    input_sentence = ''
    while(1):
        try:
            # Get input sentence
            input_sentence = input('> ')
            # Check if it is quit case
            if input_sentence == 'q' or input_sentence == 'quit': break
            # Normalize sentence
            input_sentence = normalizeString(input_sentence)
            # Evaluate sentence
            output_words = evaluate(encoder, decoder, searcher, voc, input_sentence)
            # Format and print response sentence
            output_words[:] = [x for x in output_words if not (x == 'EOS' or x == 'PAD')]
            print('Bot:', ' '.join(output_words))

        except KeyError:
            print("Error: Encountered unknown word.")


# Configure models
model_name = 'cb_model'
attn_model = 'dot'
#attn_model = 'general'
#attn_model = 'concat'
hidden_size = 500
encoder_n_layers = 2
decoder_n_layers = 2
dropout = 0.1
batch_size = 64

# Set checkpoint to load from; set to None if starting from scratch
loadFilename = None
checkpoint_iter = 4000
#loadFilename = os.path.join(save_dir, model_name, corpus_name,
#                            '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size),
#                            '{}_checkpoint.tar'.format(checkpoint_iter))


# Load model if a loadFilename is provided
if loadFilename:
    # If loading on same machine the model was trained on
    checkpoint = torch.load(loadFilename)
    # If loading a model trained on GPU to CPU
    #checkpoint = torch.load(loadFilename, map_location=torch.device('cpu'))
    encoder_sd = checkpoint['en']
    decoder_sd = checkpoint['de']
    encoder_optimizer_sd = checkpoint['en_opt']
    decoder_optimizer_sd = checkpoint['de_opt']
    embedding_sd = checkpoint['embedding']
    voc.__dict__ = checkpoint['voc_dict']


print('Building encoder and decoder ...')
# Initialize word embeddings
embedding = nn.Embedding(voc.num_words, hidden_size)
if loadFilename:
    embedding.load_state_dict(embedding_sd)
# Initialize encoder & decoder models
encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout)
if loadFilename:
    encoder.load_state_dict(encoder_sd)
    decoder.load_state_dict(decoder_sd)
# Use appropriate device
encoder = encoder.to(device)
decoder = decoder.to(device)
print('Models built and ready to go!')

# Configure training/optimization
clip = 50.0
teacher_forcing_ratio = 1.0
learning_rate = 0.0001
decoder_learning_ratio = 5.0
n_iteration = 4000
print_every = 1
save_every = 500

# Ensure dropout layers are in train mode
encoder.train()
decoder.train()

# Initialize optimizers
print('Building optimizers ...')
encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate * decoder_learning_ratio)
if loadFilename:
    encoder_optimizer.load_state_dict(encoder_optimizer_sd)
    decoder_optimizer.load_state_dict(decoder_optimizer_sd)

# If you have cuda, configure cuda to call
for state in encoder_optimizer.state.values():
    for k, v in state.items():
        if isinstance(v, torch.Tensor):
            state[k] = v.cuda()

for state in decoder_optimizer.state.values():
    for k, v in state.items():
        if isinstance(v, torch.Tensor):
            state[k] = v.cuda()

# Run training iterations
print("Starting Training!")
trainIters(model_name, voc, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer,
           embedding, encoder_n_layers, decoder_n_layers, save_dir, n_iteration, batch_size,
           print_every, save_every, clip, corpus_name, loadFilename)

# Set dropout layers to eval mode
encoder.eval()
decoder.eval()

# Initialize search module
searcher = GreedySearchDecoder(encoder, decoder)

# Begin chatting (uncomment and run the following line to begin)
# evaluateInput(encoder, decoder, searcher, voc)

你可能感兴趣的:(autogloun,自然语言处理,深度学习,pytorch)