深度学习 | Detectron2使用指南

文章目录

  • 1. Detectron2安装
    • 1.1 Linux
    • 1.2 Windows
      • 1.2.1 VS2019 C++编译环境
      • 1.2.2 pycocotools
      • 1.2.3 Detectron2
  • 2. 自定义数据集
    • 2.1 关于COCO格式
    • 2.2 注册数据集
    • 2.3 可视化工具
    • 2.4 自定义数据增强
  • 3. 自定义模型
    • 3.1 特征提取网络(backbone)
    • 3.2 候选框生成器(proposal_generator)
    • 3.3 检测器(roi_heads)
    • 3.4 模型框架(meta_arch)
  • 4. 模型训练
    • 4.1 默认训练
    • 4.2 自定义训练
    • 4.3 完整训练流程
  • 5. 配置文件
  • 6. 备注

深度学习 | Detectron2使用指南_第1张图片

Detectron2Facebook AI Research的检测和分割框架,其主要基于PyTorch实现,但具有更模块化设计,因此它是灵活且便于扩展的,具体简介可见Github库和Meta AI Blog Post。

@misc{wu2019detectron2,
  author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
 Wan-Yen Lo and Ross Girshick},
  title =        {Detectron2},
  howpublished = {\url{https://github.com/facebookresearch/detectron2}},
  year =         {2019}
}

1. Detectron2安装

首先官方要求的环境条件如下:

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.8 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this
  • OpenCV is optional but needed by demo and visualization
  • gcc & g++ ≥ 5.4 are required
  • ninja is optional but recommended for faster build
  • Cuda & Cudnn

因此想要安装并使用Detectron2,需要有:

  • 环境:Python,Cuda,Cudnn,gcc&g++
  • Python包:pytorch,torchvision,python-opencv
  • 推荐:Anaconda

1.1 Linux

Linux安装直接按照官方文档的安装步骤即可

python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
# (add --user if you don't have permission)

# Or, to install it from a local clone:
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2

# On macOS, you may need to prepend the above commands with a few environment variables:
CC=clang CXX=clang++ ARCHFLAGS="-arch x86_64" python -m pip install ...

如果以上安装失败,可以尝试直接安装预编译文件,同样在官方文档有提供

1.2 Windows

1.2.1 VS2019 C++编译环境

Windows想要安装Detectron2,需要提前安装Microsoft Visual Studio 2019,然后选择安装“使用C++的桌面开发”,其他均默认即可。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IEDpxG7n-1647657267595)(https://cdn.jsdelivr.net/gh/Justlovesmile/CDN2/post/20220316165420.png)]

1.2.2 pycocotools

安装方法一:

pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

安装方法二:

git clone https://github.com/pdollar/coco.git

cd coco/PythonAPI

python setup.py build_ext --inplace
python setup.py build_ext install

如果安装失败(一般都会失败),尝试下载“Microsoft Visual C++ Build Tools.exe” ,官网链接:https://go.microsoft.com/fwlink/?LinkId=691126。

深度学习 | Detectron2使用指南_第2张图片

如果在安装的过程中因网络问题失败,可以使用离线包,网盘链接:https://pan.baidu.com/s/1GeJ2c8MxnZP8lAYAwQACzg,提取码1114

1.2.3 Detectron2

使用Conda(推荐!之前有过同一个包使用conda安装的好用而pip安装的不好用的经历)或者pip下载包:

conda install cython
conda install ninja
conda install pywin32

下载Detectron2到本地:

git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2

或者

git clone https://github.com/facebookresearch/detectron2.git
cd detectron2 
python setup.py build develop

2. 自定义数据集

2.1 关于COCO格式

Detectron2已经写好了COCO格式的数据集图像和标注的读取,因此通常减少工作量,可以自己写一个脚本将数据集转为COCO格式的标注,可参考目标检测 | 常用数据集标注格式以及转换代码。

COCO的文件目录如下:

-coco/
    |-train2017/
    	|-1.jpg
    	|-2.jpg
    |-val2017/
    	|-3.jpg
    	|-4.jpg
    |-test2017/
    	|-5.jpg
    	|-6.jpg
    |-annotations/
    	|-instances_train2017.json
    	|-instances_val2017.json
    	|-*.json

其中标注文件(json)最为重要,其格式如下:

{
	"info": {//数据集信息,对于训练而言不重要
		"year": int, 
		"version": str, 
		"description": str, 
		"contributor": str, 
		"url": str, 
		"date_created": datetime,
	}, 
	"images": [{
		"id": int, //必要
		"width": int, //必要
		"height": int, //必要
		"file_name": str, //必要
		"license": int,
		"flickr_url": str,
		"coco_url": str,
		"date_captured": datetime, 
	},{...}], //列表
	"annotations": [{
		"id": int, //标注id
		"image_id": int, //所属图像id
		"category_id": int, //类别id
		"segmentation": RLE or [polygon], //图像分割标注
		"area": float, //区域面积
		"bbox": [x,y,width,height], //目标框左上角坐标以及宽高
		"iscrowd": 0 or 1, //是否密集
	},{...}], //列表
	"categories": [{
		"id": int, //类别序号
		"name": str, //类别名称
		"supercategory": str, //父类别
	}], //列表
	"licenses": [{//对于训练,不重要
		"id": int, 
		"name": str, 
		"url": str,
	}], //列表
}

2.2 注册数据集

import os

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.register_coco import register_coco_instances


DATA_ALL_CATEGORIES = [
 {'id': 1, 'name': 'airplane'},
 {'id': 2, 'name': 'ship'},
 {'id': 3, 'name': 'storage tank'},
 {'id': 4, 'name': 'baseball diamond'},
 {'id': 5, 'name': 'tennis court'},
 {'id': 6, 'name': 'basketball court'},
 {'id': 7, 'name': 'ground track field'},
 {'id': 8, 'name': 'harbor'},
 {'id': 9, 'name': 'bridge'},
 {'id': 10, 'name': 'vehicle'}
]

DATA_SPLITS = {}
DATA_SPLITS['nwpu_all'] = {
	'nwpu_all_trainval': (
		os.path.join(DATA_ROOT,"positive image set"),
		os.path.join(DATA_ROOT,'trainval.json')
	),
	'nwpu_all_test': (
		os.path.join(DATA_ROOT,"positive image set"),
		os.path.join(DATA_ROOT,'test.json')
	)
}

def _get_data_all_instance_meta():
    thing_ids = [k["id"] for k in DATA_ALL_CATEGORIES]
    thing_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(thing_ids)}
    thing_classes = [k["name"] for k in DATA_ALL_CATEGORIES]
    ret = {
        "thing_dataset": thing_dataset_id_to_contiguous_id,
        "thing_classes": thing_classes,
    }
    return ret

def _get_builtin_metadata(dataset_name):
    if dataset_name == "nwpu_all":
        return _get_data_instance_meta(DATA_ALL_CATEGORIES)

def register_all(root):
    for dataset_name, splits_per_dataset in DATA_SPLITS.items():
        for key, (image_root, json_file) in splits_per_dataset.items():
            assert os.path.exists(os.path.join(root, json_file))
            register_coco_instances(
                key,
                _get_builtin_metadata(dataset_name),
                os.path.join(root, json_file) if "://" not in json_file else json_file,
                os.path.join(root, image_root),
            )

DATA_ROOT = "D:/GISP/XIEMINGJIE/Code/Detection/dataset/NWPU VHR-10 dataset/"

register_all(DATA_ROOT)

此时已完成nwpu_all_trainval以及nwpu_all_test数据集的注册,可以通过代码查看:

print(DatasetCatalog.get("nwpu_all_trainval"))
print(DatasetCatalog.get("nwpu_all_test"))

当然,如果不想要使用COCO格式数据集也可以自定义注册函数,可以参考register_coco_instances的代码:

def register_coco_instances(name, metadata, json_file, image_root):
    """
    Args:
        name (str): the name that identifies a dataset, e.g. "coco_2014_train".
        metadata (dict): extra metadata associated with this dataset.  You can
            leave it as an empty dict.
        json_file (str): path to the json instance annotation file.
        image_root (str or path-like): directory which contains all the images.
    """
    assert isinstance(name, str), name
    assert isinstance(json_file, (str, os.PathLike)), json_file
    assert isinstance(image_root, (str, os.PathLike)), image_root
    # 1. register a function which returns dicts
    DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name))

    # 2. Optionally, add metadata about this dataset,
    # since they might be useful in evaluation, visualization or logging
    MetadataCatalog.get(name).set(
        json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata
    )

其中load_coco_json函数的功能是读取数据集标注文件,并以固定的形式返回,详细可见官网:

# load_coco_json返回的是一个列表
# 返回格式如下:
def load_coco_json(json_file, image_root, dataset_name=None, extra_annotation_keys=None):
	# read and do something
	# ...
	# generate dataset_dicts like: ↓
    dataset_dicts = [{'file_name': '...\\images\\001.jpg', 'height': 939, 'width': 1356, 'image_id': 0, 'annotations': [{'iscrowd': 0, 'bbox': [903, 57, 129, 123], 'category_id': 0, 'bbox_mode': <BoxMode.XYWH_ABS: 1>}]}, {...}]
    
    return dataset_dicts

2.3 可视化工具

import random
import cv2

from detectron2.data import MetadataCatalog
from detectron2.data import detection_utils as utils
from detectron2.utils.visualizer import Visualizer

datasets_dicts = DatasetCatalog.get("nwpu_all_trainval_1shot")

for data in random.sample(datasets_dicts, 1):
    img = utils.read_image(data["file_name"])
    visual = Visualizer(img, metadata=MetadataCatalog.get("nwpu_all_trainval"),scale=0.5)
    vis = visual.draw_dataset_dict(data)
    cv2.imshow("window", vis.get_image()[:, :, ::-1])
    cv2.waitKey()

深度学习 | Detectron2使用指南_第3张图片

2.4 自定义数据增强

在注册了数据集之后就可以用detectron2.data.build_detection_train_loaderdetectron2.data.build_detection_test_loader构建Dataloader,即数据集的加载方式。

from detectron2.config import get_cfg
import detectron2.data.transforms as T
from detectron2.model_zoo import model_zoo
from detectron2.data import build_detection_train_loader
from detectron2.data import DatasetMapper   # the default mapper

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/retinanet_R_50_FPN_1x.yaml"))
cfg.DATASETS.TRAIN = ("nwpu_all_trainval",)

mapper = DatasetMapper(cfg,is_train=True,augmentations=[T.Resize((800, 800))])
train_loader = build_detection_train_loader(cfg,mapper=mapper)

build_detection_train_loader()的参数如下:

build_detection_train_loader(
    dataset,
    *,
    mapper,
    sampler=None,
    total_batch_size,
    aspect_ratio_grouping=True,
    num_workers=0,
    collate_fn=None,
)

其中mapper对应的就是数据增强部分,默认为detectron2.data.DatasetMappersampler对应的采样策略部分,通常只需要关注mapper即可。

class DatasetMapper:
    @configurable
    def __init__(self,is_train: bool):
        pass

    @classmethod
    def from_config(cls, cfg, is_train: bool = True):
        pass

    def _transform_annotations(self, dataset_dict, transforms, image_shape):
        pass

    def __call__(self, dataset_dict):
        pass
        return dataset_dict

官方给的自定义简化DataMapper:

from detectron2.data import detection_utils as utils
import detectron2.data.transforms as T

def mapper(dataset_dict):
    dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
    # can use other ways to read image
    image = utils.read_image(dataset_dict["file_name"], format="BGR")
    # "Data Augmentation"
    auginput = T.AugInput(image)
    transform = T.Resize((800, 800))(auginput)
    image = torch.from_numpy(auginput.image.transpose(2, 0, 1))
    annos = [
        utils.transform_instance_annotations(annotation, [transform], image.shape[1:])
        for annotation in dataset_dict.pop("annotations")
    ]
    return {
       # create the format that the model expects
       "image": image,
       "instances": utils.annotations_to_instances(annos, image.shape[1:])
    }

dataloader = build_detection_train_loader(cfg, mapper=mapper)

因此自定义的数据增强需要满足,输入为dataset_dict,输出为:

{
 "images": image_tensor,
 "instances": utils.annotations_to_instances => Instances类
}

3. 自定义模型

Detectron2的模型是分模块的,它将目标检测模型拆分为了4个核心模块:backboneproposal_generatorroi_heads以及meta_arch

3.1 特征提取网络(backbone)

detectron2.modeling.backbone路径下可以看到,目前只有ResNetFPNRegNet

可直接使用的backbone

build_resnet_backbone
build_resnet_fpn_backbone
build_retinanet_resnet_fpn_backbone

官方的自定义backbone的案例:

from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec

@BACKBONE_REGISTRY.register()
class ToyBackbone(Backbone):
  def __init__(self, cfg, input_shape):
    super().__init__()
    # create your own backbone
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=16, padding=3)

  def forward(self, image):
    return {"conv1": self.conv1(image)}

  def output_shape(self):
    return {"conv1": ShapeSpec(channels=64, stride=16)}

3.2 候选框生成器(proposal_generator)

同样可以自定义注册

@PROPOSAL_GENERATOR_REGISTRY.register()
class ToyRPN(RPN):
	def __init__(self,*args, **kwargs):
		super().__init__()
	    pass

@RPN_HEAD_REGISTRY.register()
class ToyRPNHead(StandardRPNHead):
	def __init__(self,*args, **kwargs):
	    super().__init__()
	    pass

3.3 检测器(roi_heads)

@ROI_MASK_HEAD_REGISTRY.register()
@ROI_KEYPOINT_HEAD_REGISTRY.register()
@ROI_HEADS_REGISTRY.register()
@ROI_BOX_HEAD_REGISTRY.register()

3.4 模型框架(meta_arch)

@META_ARCH_REGISTRY.register()
class ToyNet(nn.Module):
    @configurable
    def __init__(self,*args, **kwargs):
        super().__init__()
        pass

    @classmethod
    def from_config(cls, cfg):
        pass

    def forward_training(self,*args, **kwargs):
        pass

    def loss(self,*args, **kwargs):
        pass

    @torch.no_grad()
    def label_anchors(self,*args, **kwargs):
        pass
        
    def forward_inference(self,*args, **kwargs):
        pass

    def inference_single_image(self,*args, **kwargs):
        pass

具体可参考官方复现的projects

4. 模型训练

4.1 默认训练

一般而言,我们可以继承使用默认的目标检测任务训练器DefalutTrainer,而DefalutTrainer又是继承自TrainerBaseTrainerBase中又使用到了HookBase。我的理解是HookBaseTrainerBase是将一个训练过程抽象并拆分成阶段步骤的过程,先看HookBase

class HookBase:
    def before_train(self):
        """
        Called before the first iteration.
        """
        pass

    def after_train(self):
        """
        Called after the last iteration.
        """
        pass

    def before_step(self):
        """
        Called before each iteration.
        """
        pass

    def after_step(self):
        """
        Called after each iteration.
        """
        pass

    def state_dict(self):
        return {}

对于训练而言,它将一个完整的训练拆分成:

class TrainerBase:
    def __init__(self):
        self._hooks: List[HookBase] = []

    def register_hooks(self, hooks: List[Optional[HookBase]]) -> None:
        hooks = [h for h in hooks if h is not None]
        for h in hooks:
            assert isinstance(h, HookBase)
            h.trainer = weakref.proxy(self)
        self._hooks.extend(hooks)

    def train(self, start_iter: int, max_iter: int):
        self.iter = self.start_iter = start_iter
        self.max_iter = max_iter
        with EventStorage(start_iter) as self.storage:
            try:
                self.before_train()
                for self.iter in range(start_iter, max_iter):
                    self.before_step()
                    self.run_step()
                    self.after_step()
            finally:
                self.after_train()

    def before_train(self):
        for h in self._hooks:
            h.before_train()

    def after_train(self):
        self.storage.iter = self.iter
        for h in self._hooks:
            h.after_train()

    def before_step(self):
        self.storage.iter = self.iter
        for h in self._hooks:
            h.before_step()

    def after_step(self):
        for h in self._hooks:
            h.after_step()

    def run_step(self):
        raise NotImplementedError

    def state_dict(self):
        pass

    def load_state_dict(self, state_dict):
        pass

简化一点,它将一个训练过程抽象成:

hook.before_train()
for iter in range(start_iter, max_iter):
    hook.before_step()
    trainer.run_step()
    hook.after_step()
iter += 1
hook.after_train()

具体到目标检测任务,DefaultTrainer

class DefaultTrainer(TrainerBase):
    def __init__(self, cfg):
        super().__init__()
        pass

    def build_hooks(self):
        pass

    def build_writers(self):
        pass	

    def train(self):
        pass

    @classmethod
    def test(cls, cfg, model, evaluators=None):
        pass
    # 
    # a lot of
    # def ...(...):
    #     .....
    # 

    @classmethod
    def build_train_loader(cls, cfg):
        return build_detection_train_loader(cfg)

    @classmethod
    def build_test_loader(cls, cfg, dataset_name):
        return build_detection_test_loader(cfg, dataset_name)

    @classmethod
    def build_evaluator(cls, cfg, dataset_name):
        pass

4.2 自定义训练

由于Detectron2已经将训练过程模块化,因此只需要修改对应模块即可,而一般而言,我们只需要修改数据加载和evaluate部分:

from detectron2.engine import DefaultTrainer
class Trainer(DefaultTrainer):
    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        evaluator_list = []
        pass
        return DatasetEvaluators(evaluator_list)

    @classmethod
    def build_test_loader(cls, cfg, dataset_name):
        return build_detection_test_loader(cfg, dataset_name, mapper=my_mapper(cfg,"test"))

    @classmethod
    def build_train_loader(cls, cfg):
        return build_detection_train_loader(cfg, mapper=my_mapper(cfg, "train"))

4.3 完整训练流程

参考tools/train_net.py或者tools/plain_train_net.py,已经写的非常详细了,注意别忘了导入自己写好的注册数据集以及注册模型的文件,只要导入了就会自动注册,就可以在配置文件中使用。

5. 配置文件

参考configs文件夹下的yaml文件格式,,可以通过__BASE__继承基础配置文件,还可以直接覆盖之前的配置,如retinanet_R_50_FPN_3x.yaml

_BASE_: "../Base-RetinaNet.yaml"
MODEL:
  WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
  RESNETS:
    DEPTH: 50
SOLVER:
  STEPS: (210000, 250000)
  MAX_ITER: 270000

查看全部配置项:

from detectron2.config import get_cfg
cfg = get_cfg()

print(cfg)
# 或者
print(cfg.dump())

在python文件中修改配置:

cfg.SOLVER.BASE_LR = 0.001
# 或者
cfg.merge_from_list(["SOLVER.BASE_LR", "0.001"])

合并多个文件中的配置项:

cfg.merge_from_file("my_cfg.yaml")

由于配置项本质上还是转换成了字典类型,因此可以直接从python文件导入配置,并且也提供了python格式的配置文件该怎么进行训练的示例,参考tools/lazyconfig_train_net.py

# config.py
NEW_MODEL = dict(NUM=1,SIZE=dict(W=2,H=3))
NEW_OPT = dict(NAME="hhhh")

# ---
from detectron2.config import LazyConfig
cfg = LazyConfig.load("config.py")
assert cfg.NEW_MODEL.SIZE.W==2
# cfg = LazyConfig.load(args.config_file)
# cfg = LazyConfig.apply_overrides(cfg, args.opts)

并且Detectron2还提供了一个帮助创建配置字典的函数,LazyCall

from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import RegNet
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock

bottom_up = L(RegNet)(
    stem_class=SimpleStem,
    stem_width=32,
    block_class=ResBottleneckBlock,
    depth=23,
    w_a=38.65,
    w_0=96,
    w_m=2.43,
    group_width=40,
    norm="SyncBN",
    out_features=["s1", "s2", "s3", "s4"],
)

print(bottom_up)

6. 备注

后续更新请看我的个人知识博客

你可能感兴趣的:(人工智能,学习笔记,代码编程,深度学习,目标检测,python)