- AI大模型时代,2025大龄程序员如何轻松转型赢未来?
AI大模型学习不迷路
人工智能自然语言处理大模型大语言模型语言模型程序员转行
当前大龄程序员的处境在科技行业的高速发展中,大龄程序员这一群体正面临着前所未有的挑战。随着新兴技术的不断涌现,如云计算、大数据、人工智能等,传统的编程技能逐渐显得“过时”。同时,年轻一代的程序员以更加低廉的薪酬和旺盛的精力涌入市场,加剧了职场的竞争。对于大龄程序员而言,他们不仅需要应对技能更新的压力,还常常受到年龄歧视的影响,尤其是在追求创新和速度的科技公司中。许多大龄程序员发现自己处于尴尬境地,
- HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发引言在金融科技领域,数据可视化是帮助用户快速理解复杂数据的关键工具。随着HarmonyNext的推出,开发者可以利用ArkTS的强大能力,构建高性能、跨平台的金融数据可视化应用。本文将深入探讨如何基于ArkTS开发一个金融数据可视化应用,并通过一个实战案例详细讲解其实现过程。项目背景与需求分析项目背景金融数据通常具有高维度、大
- 数字隐形盾牌:日常场景下的网络安全实践
安全防护
一、网络威胁:潜伏在屏幕后的"数字劫匪"2025年全球每11秒发生一次勒索攻击,每天新增45万个钓鱼网站,你的手机里可能正躺着3-5个高危漏洞。这些数据揭示了一个残酷现实:我们正生活在一个"数字丛林时代"。三大致命威胁:钓鱼攻击升级版:骗子不仅伪造银行邮件,现在会克隆公司高管的微信,用AI模仿老板声音要求转账**Wi-Fi陷阱:**商场免费Wi-Fi可能在15秒内窃取你的支付密码,机场充电桩可能成
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- 8051汇编--条件转移指令
wperseverance
51单片机51单片机
在8051汇编语言中,控制转移指令用于改变程序的执行顺序,主要包括无条件转移、条件转移和调用/返回指令。以下是对这些指令的总结:一、无条件转移指令LJMP(LongJump)•功能:长转移,可以跳转到同一程序空间中的任何地址。•指令格式:LJMPaddr16,其中addr16是16位的目标地址。•特点:跳转范围大,适用于跨段跳转。•使用场景:当需要跳转到较远的地址时使用。SJMP(ShortJum
- 【颠覆认知】大模型开发终极实战:30分钟用LangChain打造「超级AI客服」系统(附全代码+黑科技调参技巧)
煜bart
人工智能
重磅提示:文末含99%开发者不知道的Prompt逆向注入破解方案!---###一、撕开大模型开发的遮羞布:传统方案的三大致命陷阱传统AI客服系统开发面临:1.对话记忆金鱼症(7轮对话必失忆)2.知识库更新堪比器官移植3.业务逻辑与AI模型强耦合我们
- 人工智能_大模型091_大模型工作流001_使用工作流的原因_处理复杂问题_多轮自我反思优化ReAct_COT思维链---人工智能工作笔记0236
添柴程序猿
大模型开发&神经网络人工智能大模型工作流COT思维链ReAct自我反思优化大模型工作流开发
#清理环境信息,与上课内容无关importosos.environ["LANGCHAIN_PROJECT"]=""os.environ["LANGCHAIN_API_KEY"]=""os.environ["LANGCHAIN_ENDPOINT"]=""os.environ["LANGCHAIN_TRACING_V2"]=""#安装所需要使用的包!pipinstallopenailanggraphA
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- 非对称加密:SSL/TLS握手的数学基石
安全
1.密钥交换的密码学困局在未加密的HTTP通信中,攻击者可通过中间人攻击(MITM)窃听或篡改数据。SSL/TLS协议的核心挑战在于:如何在不安全的信道上建立安全通信?这本质上是一个“密钥分发问题”——若使用对称加密(如AES),双方需要共享同一密钥,但密钥本身如何安全传递?非对称加密的突破性在于公钥与私钥的分离。以RSA算法为例,其数学基础是大质数分解难题:选择两个大质数p和q(通常≥2048位
- 千问大模型携手超算互联网:算力驱动下的安全新征程
安全
一、技术革命的新纪元:从“火种”到“燎原”2025年3月,中国国家超算互联网平台宣布接入阿里巴巴“千问QwQ-32B”大模型。这一事件,标志着人类算力资源整合迈入新阶段——超算中心不再仅是巨型计算机的集合,而是演化为承载智能的“数字大脑”。用户可通过平台免费调用百万级Token的计算资源,如同古希腊神话中普罗米修斯盗火予人,超算互联网正将“智能之火”播撒至科研、工业乃至普通开发者手中。然而,火种既
- 基于大模型的单纯性孔源性视网膜脱离预测及治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、单纯性孔源性视网膜脱离概述2.1发病机制2.2高危因素2.3临床表现与诊断方法三、大模型在术前预测中的应用3.1模型选择与数据收集3.2术前风险预测指标3.3预测结果分析与验证四、基于预测结果的手术方案制定4.1手术原则与目标4.2不同预测结果下的手术方式选择4.3手术案例分析五、麻醉方案的确定5.1麻醉方式的选择依据5
- Gemini 2.0 全面解析:技术突破、应用场景与竞争格局
zhz5214
AI人工智能aiAI编程AI写作程序员创富
摘要2025年3月,谷歌正式发布Gemini2.0大模型,凭借其在多模态处理、代码生成和长上下文理解等领域的突破性进展,迅速成为AI领域的焦点。本文将深入剖析Gemini2.0的技术架构、应用场景及与Grok3、DeepSeekR1、ChatGPT-4.5等竞品的对比,探讨大模型技术的边界与未来趋势。1.Gemini2.0技术亮点1.1模型架构与性能提升Gemini2.0采用混合专家模型(MoE)
- GEE数据集——Harmonized Landsat Sentinel-2 (HLS) 卫星sentinel-2哨兵-2(HLS)
此星光明
GEE数据集专栏sentinel遥感影像gee数据集nasaHLS-2
简介统一大地遥感卫星哨兵-2(HLS)项目通过虚拟卫星传感器群提供一致的地表反射率(SR)和大气层顶部亮度(TOA)数据。陆地成像仪(OLI)安装在美国宇航局/美国地质调查局的联合陆地卫星8号和陆地卫星9号上,而多光谱仪(MSI)则安装在欧洲的哥白尼哨兵-2A号和哨兵-2B号卫星上。通过综合测量,可以每2到3天以30米的空间分辨率对陆地进行全球观测。HLS项目使用一套算法来获得OLI和MSI的无缝
- 通用开关与矩阵开关卡及多路复用开关的对比
北京阿尔泰科技厂家
矩阵自动化科技远程工作集成测试网络
1、通用开关是指由单个继电器构成的一类开关体系结构。用户可以将这些继电器互连,形成标准开关结构,如MUX或矩阵,应用到自己的体系结构,或者简单地用于切换单个信号线的通断。当用于创建更大的标准开关结构时,这种方法的缺点就是成本相对较高,或者性能较低,主要是因为连接器较高的引脚使用率,加上需要将继电器与连接器都要连接在一起,从而也导致密度很低。然而,这也使得他们非常灵活,特别是当使用外部互连系统,如大
- 32路模拟采集PCI总线带DIO用什么采集卡
阿尔泰1999
数据分析嵌入式硬件科技
北京阿尔泰科技PCI5659是一-款多功能数据采集卡,具有32路12位100K采集频率,AD带16K字FIFO缓存,保证数据的连续性,并带16路可设方向的DIO功能。产品支持阿尔泰科技最新的ART-DAQ数据管理软件,提供QT、PYTHON、LABVIEW、VC、VB、VB.NET、C#等例子程序。模拟量输入通道数32路精度12位*大采样频率100KsPs多通道采样速度各通道*大采样频率/设置的采
- 深入理解 OTSU 算法(大津法——最大类间方差法)
ZHauLee
机器学习算法计算机视觉人工智能
一、算法概述OTSU算法是一种用于图像分割的自动阈值选择算法,广泛应用于图像处理领域,特别是在二值化过程中。它是由日本学者大津展之(NobuyukiOtsu)在1979年提出,因此得名“OTSU算法”。二、算法原理OTSU算法的核心思想是通过遍历所有可能的阈值,将图像分割为前景(目标)和背景两部分,使得这两部分之间的类内方差(intra-classvariance)最小,或者说使得这两部分之间的类
- otsu算法_OTSU(大津法最大类间方差法)
weixin_39996742
otsu算法
OTSU基本介绍OTSU是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出,被誉为是图像分割中全局阈值选择的最佳方法。OTSU按照图像的灰度特性,将图像分成前景和背景两部分。因为方差可以看成是灰度分布均匀的一种度量,故前景和背景之间的类间方差越大,说明构成图像两部分的差别越大,当部分前景错分为背景或者部分背景被错分为前景时,都会导致两部分的差别变小。使用类间方差最大的分割一位置错分
- 大模型LLM基于PEFT的LoRA微调详细步骤---第一篇:模型下载篇
素雪风华
大模型下载Huggingface魔搭社区transformer
模型下载:HuggingFace官网:https://huggingface.co/----需要VPN魔搭社区:https://modelscope.cn/home----国内映射,不需要VPN写在篇始:国内关注方法一即可。其余几种都需要VPN,而且在服务器下载的速度有限~~。下一篇:微调详细流程以及环境...方法一:魔搭(modelscope)下载#需要安装pipinstallmodelscop
- Vue动态组件完全指南:原理、使用场景与最佳实践
北辰alk
前端vuevue.jsjavascript前端
文章目录一、什么是动态组件?核心特性:二、基本使用方式1.基础语法2.组件注册方式3.动态组件生命周期三、六大典型应用场景1.标签页切换系统2.多步骤表单流程3.动态仪表盘4.权限驱动视图5.插件系统集成6.服务端驱动界面四、高级使用技巧1.状态保持方案2.动态Props传递3.异步组件加载4.过渡动画支持五、性能优化策略1.缓存策略对比2.代码分割配置3.内存管理示例六、常见问题解决方案1.组件
- 大模型架构记录7-langchain
处女座_三月
LLMlangchain
一Langchain的应用目录:langchain的overviewprompttemplatemodelsandoutputparsers1.什么是langchain,为什么需要langchain?问题:如何没有langchain会怎么样?一个项目可能会包括:调用多个不同的大模型(gpt4,视频生成...)向量数据库数据类型(读取,trunk的切分...)langchain是面于大模型开发的框架
- 阿里巴巴发布 R1-Omni:首个基于 RLVR 的全模态大语言模型,用于情感识别
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/情感识别一直是AI领域的难题,尤其是视觉与音频信号的融合。单独依赖视觉或音频的模型,往往
- java24种设计模式目录,为大家整理最全的24种设计模式详解,必收藏
高补
java24种设计模式目录
设计模式六大原则单一职责原则一个方法尽可能做一件事情,一般来说不应该让一个方法承担多个职责。单一职责原则的英文名称是SingleResponsibilityPrinciple,简称是SRP。单一职责原则的定义是:应该有且仅有一个原因引起类的变更。SRP的原话解释是:Thereshouldneverbemorethanonereasonforaclasstochange.单一职责原则提出了一个编写程
- 解码数字基因:数据架构如何重塑企业核心竞争力?——全面解析数据架构的战略价值与实践路径
领码科技
产业篇央国企技能篇数据架构数据模型数据资产目录企业数字化转型TOGAF
摘要:数据架构作为企业数字化转型的“基因图谱”,通过整合业务需求与IT实现,构建起数据流动的规则体系。本文系统剖析数据架构的四大核心组件(数据资产目录、数据模型、数据标准、数据分布)及其协同逻辑,揭示其在TOGAF4A架构中的桥梁作用,解读从架构规划到主数据落地的全生命周期管理。结合华为等标杆企业实践,提供兼具理论深度与实操指导的方法论框架,助力企业打造高质量数据底座。关键词:数据架构、数据模型、
- 智驾赋能新质生产力,开启“全感知时代”
高工智能汽车
汽车人工智能自动驾驶大数据
当前,人类社会正稳步踏入全领域智能化的崭新时代。工业智能化、农业智能化、商业智能化浪潮奔涌,全方位融入人们的工作与生活,成为推动社会进步的重要力量。在各行各业的高端技术前沿领域,设备智能化、自动化、无人化升级进程正不断加速。然而,环境感知与实时决策能力,始终是横亘在技术飞跃之路上的关键阻碍。这两大能力犹如高悬的“达摩克利斯之剑”,一旦成为短板,就会迅速演变为制约技术突破的“瓶颈”。只有精准、高效地
- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- Python真经:代码修仙录
zzzzjflzdvkk
python开发语言青少年编程python真经
第一章:Python真经的起源在八十年代末,九十年代初,荷兰国境之内,有一位名为GuidovanRossum的修士,于国家数学与计算机科学研究所中,悟出了一门无上真经——Python。此真经融合了诸多上古大能的智慧结晶,如ABC、Modula-3、C、C++、Algol-68、SmallTalk、Unixshell等,终成一体,化为Python真经。Python真经自诞生之日起,便遵循GPL(GN
- R+VIC模型融合实践技术应用及未来气候变化模型预测
科研的力量
水文地质土壤水文模型VIC模型
在气候变化问题日益严重的今天,水文模型在防洪规划,未来预测等方面发挥着不可替代的重要作用。目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然,这些软件有各自的优点;但是,由于适用的尺度主要的是中小流域,所以在预测气候变化对水文过程影响等方面都有所不足。VIC模型是一个大尺度的半分布式水文模型,其设计之初就是为了模拟大流域的水文过程;它能够计算陆地
- AI 行业发展趋势:科技创新引领未来变革
我是阿萌
畅聊AI人工智能科技学习
在当今数字化时代,人工智能(AI)行业正以前所未有的速度蓬勃发展,深刻地改变着我们的生活、工作和社会格局。从基础技术的突破到广泛的应用场景拓展,AI展现出了一系列令人瞩目的发展趋势,预示着一个充满无限可能的未来。一、技术创新持续突破模型规模与性能提升AI模型正朝着更大规模、更复杂的方向发展。以GPT系列为代表的大语言模型,参数数量不断攀升,从GPT-2的15亿参数到GPT-4的万亿级参数,模型的语
- Prompt工程:大模型沟通指南(人工智能到大模型)
Harry技术
AIprompt人工智能
文章目录人工智能到大模型机器学习深度学习大模型Prompt工程:大模型沟通的桥梁在人工智能的广袤领域中,大模型无疑是最为璀璨的明珠之一。它仿佛是一座连接人类与人工智能的桥梁,让我们能够更加深入地探索和利用人工智能的强大能力。而要实现与大模型的高效沟通,Prompt工程扮演着至关重要的角色。让我们一起走进Prompt工程的奇妙世界,探寻大模型沟通的奥秘。人工智能到大模型“人工智能是一种模拟人类智能的
- MySQL慢SQL优化方案详解:从诊断到根治的完整指南
jiajia651304
mysqlsqlffmpeg
MySQL慢SQL优化方案详解:从诊断到根治的完整指南一、慢SQL的致命影响当数据库响应时间超过500ms时,系统将面临三大灾难链式反应:用户体验崩塌页面加载超时率上升37%用户跳出率增加52%核心业务转化率下降29%系统稳定性危机连接池耗尽风险提升4.8倍主从同步延迟突破10秒阈值磁盘IO利用率长期超90%运维成本飙升DBA故障处理时间增加65%硬件扩容频率提高3倍夜间告警量激增80%通过监控系
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro