感知器及其在python中的实现_Python实现感知器的逻辑电路(与门、与非门、或门、异或门)...

在神经网络入门回顾(感知器、多层感知器)中整理了关于感知器和多层感知器的理论,这里实现关于与门、与非门、或门、异或门的代码,以便对感知器有更好的感觉。

此外,我们使用 pytest 框架进行测试。

pip install pytest

与门、与非门、或门

通过一层感知器就可以实现与门、与非门、或门。

先写测试代码 test_perception.py:

1 from perception importand_operate, nand_operate, or_operate2

3

4 deftest_and_operate():5 """

6 测试与门7 :return:8 """

9 assert and_operate(1, 1) == 1

10 assert and_operate(1, 0) ==011 assert and_operate(0, 1) ==012 assert and_operate(0, 0) ==013

14

15 deftest_nand_operate():16 """

17 测试与非门18 :return:19 """

20 assert nand_operate(1, 1) ==021 assert nand_operate(1, 0) == 1

22 assert nand_operate(0, 1) == 1

23 assert nand_operate(0, 0) == 1

24

25

26 deftest_or_operate():27 """

28 测试或门29 :return:30 """

31 assert or_operate(1, 1) == 1

32 assert or_operate(1, 0) == 1

33 assert or_operate(0, 1) == 1

34 assert or_operate(0, 0) == 0

写完测试代码,后面直接输入命令  pytest -v  即可测试代码。

这三个门的权重和偏置是根据人的直觉或者画图得到的,并且不是唯一的。以下是简单的实现,在 perception.py 中写上:

1 importnumpy as np2

3

4 defstep_function(x):5 """

6 阶跃函数7 :param x:8 :return:9 """

10 if x <=0:11 return012 else:13 return 1

14

15

16 defand_operate(x1, x2):17 """

18 与门19 :param x1:20 :param x2:21 :return:22 """

23 x =np.array([x1, x2])24 w = np.array([0.5, 0.5])25 b = -0.7

26 return step_function(np.sum(w * x) +b)27

28

29 defnand_operate(x1, x2):30 """

31 与非门32 :param x1:33 :param x2:34 :return:35 """

36 x =np.array([x1, x2])37 w = np.array([-0.5, -0.5])38 b = 0.7

39 return step_function(np.sum(w * x) +b)40

41

42 defor_operate(x1, x2):43 """

44 或门45 :param x1:46 :param x2:47 :return:48 """

49 x =np.array([x1, x2])50 w = np.array([0.5, 0.5])51 b = -0.3

52 return step_function(np.sum(w * x) + b)

运行  pytest -v 确认测试通过。

========================================================================== test session starts ===========================================================================

platform darwin -- Python 3.6.8, pytest-5.1.2, py-1.8.0, pluggy-0.12.0 -- /Users/mac/.virtualenvs/work/bin/python3

...

collected 3 items

test_perception.py::test_and_operate PASSED [ 33%]

test_perception.py::test_nand_operate PASSED [ 66%]

test_perception.py::test_or_operate PASSED [100%]

=========================================================================== 3 passed in 0.51s ============================================================================

异或门

如上图所示,由于异或门不是线性可分的,因此需要多层感知器的结构。

使用两层感知器可以实现异或门。

修改 test_perception.py 文件,加入异或门的测试代码 :

from perception import and_operate, nand_operate, or_operate, xor_operate

以及

deftest_xor_operate():"""测试异或门

:return:"""

assert xor_operate(1, 1) ==0assert xor_operate(1, 0) == 1

assert xor_operate(0, 1) == 1

assert xor_operate(0, 0) == 0

在 perception.py 文件里加入异或门的函数:

defxor_operate(x1, x2):"""异或门

:param x1:

:param x2:

:return:"""s1=nand_operate(x1, x2)

s2=or_operate(x1, x2)return and_operate(s1, s2)

我们通过与非门和或门的线性组合实现了异或门。

运行命令  pytest -v 测试成功。

========================================================================== test session starts ===========================================================================

platform darwin -- Python 3.6.8, pytest-5.1.2, py-1.8.0, pluggy-0.12.0 -- /Users/mac/.virtualenvs/work/bin/python3

...

collected 4 items

test_perception.py::test_and_operate PASSED [ 25%]

test_perception.py::test_nand_operate PASSED [ 50%]

test_perception.py::test_or_operate PASSED [ 75%]

test_perception.py::test_xor_operate PASSED [100%]

=========================================================================== 4 passed in 0.60s ============================================================================

参考

《Neural networks and deep learning》by Aurélien Géron

《Deep learning from scratch》by 斋藤康毅

你可能感兴趣的:(感知器及其在python中的实现_Python实现感知器的逻辑电路(与门、与非门、或门、异或门)...)