[whu1568]dp优化

http://acm.whu.edu.cn/land/problem/detail?problem_id=1568

思路:先将所有数分解,得到2,3,5,7的个数,转化为用这些2,3,5,7"构成"的不同序列的个数。一般思路,令dp[a][b][c][d]表示2有a个,3有b个,5有c个,7有d个时的答案,那么有如下转移方程:dp[a][b][c][d] = sigma(i:2->9)(a', b', c', d'),a'为a减去i包含2的因子个数的结果,b',c',d'同理。由于空间消耗太大,必须另外考虑方法。注意到5和7是不可能组成其它的数的,可以单独处理,于是可以先用2和3构造,但需要把长度加进去作为状态的一部分,最后再把5和7插到构造成的序列里面。

  1 //#pragma comment(linker, "/STACK:10240000,10240000")

  2 

  3 #include <iostream>

  4 #include <cstdio>

  5 #include <algorithm>

  6 #include <cstdlib>

  7 #include <cstring>

  8 #include <map>

  9 #include <queue>

 10 #include <deque>

 11 #include <cmath>

 12 #include <vector>

 13 #include <ctime>

 14 #include <cctype>

 15 #include <set>

 16 #include <bitset>

 17 #include <functional>

 18 #include <numeric>

 19 #include <stdexcept>

 20 #include <utility>

 21 

 22 using namespace std;

 23 

 24 #define mem0(a) memset(a, 0, sizeof(a))

 25 #define mem_1(a) memset(a, -1, sizeof(a))

 26 #define lson l, m, rt << 1

 27 #define rson m + 1, r, rt << 1 | 1

 28 #define define_m int m = (l + r) >> 1

 29 #define rep_up0(a, b) for (int a = 0; a < (b); a++)

 30 #define rep_up1(a, b) for (int a = 1; a <= (b); a++)

 31 #define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)

 32 #define rep_down1(a, b) for (int a = b; a > 0; a--)

 33 #define all(a) (a).begin(), (a).end()

 34 #define lowbit(x) ((x) & (-(x)))

 35 #define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}

 36 #define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}

 37 #define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}

 38 #define pchr(a) putchar(a)

 39 #define pstr(a) printf("%s", a)

 40 #define sstr(a) scanf("%s", a)

 41 #define sint(a) scanf("%d", &a)

 42 #define sint2(a, b) scanf("%d%d", &a, &b)

 43 #define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)

 44 #define pint(a) printf("%d\n", a)

 45 #define test_print1(a) cout << "var1 = " << (a) << endl

 46 #define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl

 47 #define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl

 48 

 49 typedef double db;

 50 typedef long long LL;

 51 typedef pair<int, int> pii;

 52 typedef multiset<int> msi;

 53 typedef set<int> si;

 54 typedef vector<int> vi;

 55 typedef map<int, int> mii;

 56 

 57 const int dx[8] = {0, 0, -1, 1, 1, 1, -1, -1};

 58 const int dy[8] = {-1, 1, 0, 0, 1, -1, 1, -1 };

 59 const int maxn = 1e6 + 7;

 60 const int md = 1e9 + 7;

 61 const int inf = 1e9 + 7;

 62 const LL inf_L = 1e18 + 7;

 63 const double pi = acos(-1.0);

 64 const double eps = 1e-6;

 65 

 66 template<class T>T gcd(T a, T b){return b==0?a:gcd(b,a%b);}

 67 template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}

 68 template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}

 69 template<class T>T condition(bool f, T a, T b){return f?a:b;}

 70 template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}

 71 int make_id(int x, int y, int n) { return x * n + y; }

 72 

 73 template<int mod>

 74 struct ModInt {

 75     const static int MD = mod;

 76     int x;

 77     ModInt(int x = 0): x(x) {}

 78     int get() { return x; }

 79 

 80     ModInt operator + (const ModInt &that) const { int x0 = x + that.x; return ModInt(x0 < MD? x0 : x0 - MD); }

 81     ModInt operator - (const ModInt &that) const { int x0 = x - that.x; return ModInt(x0 < MD? x0 + MD : x0); }

 82     ModInt operator * (const ModInt &that) const { return ModInt((long long)x * that.x % MD); }

 83     ModInt operator / (const ModInt &that) const { return *this * that.inverse(); }

 84 

 85     ModInt operator += (const ModInt &that) { x += that.x; if (x >= MD) x -= MD; }

 86     ModInt operator -= (const ModInt &that) { x -= that.x; if (x < 0) x += MD; }

 87     ModInt operator *= (const ModInt &that) { x = (long long)x * that.x % MD; }

 88     ModInt operator /= (const ModInt &that) { *this = *this / that; }

 89 

 90     ModInt inverse() const {

 91         int a = x, b = MD, u = 1, v = 0;

 92         while(b) {

 93             int t = a / b;

 94             a -= t * b; std::swap(a, b);

 95             u -= t * v; std::swap(u, v);

 96         }

 97         if(u < 0) u += MD;

 98         return u;

 99     }

100 

101 };

102 typedef ModInt<1000000007> mint;

103 

104 

105 const int c[10][2] = {{0, 0}, {0, 0}, {1, 0}, {0, 1}, {2, 0}, {0, 0}, {1, 1}, {0, 0}, {3, 0}, {0, 2}};

106 const int d[2] = {2, 3};

107 int cnt[10];

108 mint dp[160][110][160];

109 bool vis[160][110][160];

110 mint fact[420], fact_inv[420];

111 

112 mint dfs(int a, int b, int p) {

113     if (vis[a][b][p]) return dp[a][b][p];

114     if (p == 0) return 0;

115     vis[a][b][p] = true;

116     dp[a][b][p] = 0;

117     for (int i = 2; i < 10; i++) {

118         if (i == 5 || i == 7) continue;

119         int aa = c[i][0], bb = c[i][1];

120         if (aa <= a && bb <= b) dp[a][b][p] += dfs(a - aa, b - bb, p - 1);

121     }

122     return dp[a][b][p];

123 }

124 

125 void Init() {

126     fact[0] = 1;

127     fact_inv[0] = 1;

128     for (int i = 1; i <= 410; i++) {

129         fact[i] = fact[i - 1] * i;

130         fact_inv[i] = fact[i].inverse();

131     }

132 }

133 

134 int n;

135 char s[maxn];

136 

137 int main() {

138     //freopen("in.txt", "r", stdin);

139     dp[0][0][0] = 1;

140     vis[0][0][0] = true;

141     Init();

142     while (cin >> n) {

143         scanf("%s", s);

144         mem0(cnt);

145         rep_up0(i, n) {

146             if (s[i] == '5' || s[i] == '7') {

147                 cnt[s[i] - '0']++;

148                 continue;

149             }

150             rep_up0(j, 2) {

151                 cnt[d[j]] += c[s[i] - '0'][j];

152             }

153         }

154         mint ans = 0;

155         int c23 = cnt[2] + cnt[3];

156         rep_up1(i, c23) ans += dfs(cnt[2], cnt[3], i) * fact[i + cnt[5] + cnt[7]] * fact_inv[cnt[5]] * fact_inv[cnt[7]] * fact_inv[i];

157         printf("%d\n", ans.get());

158     }

159     return 0;

160 }
View Code

 

你可能感兴趣的:(优化)