学习目标
了解赛题
赛题概况
数据概况
预测指标
赛题流程
代码示例
数据读取pandas
分类指标评价计算示例
经验总结
拓展知识——评分卡
比赛地址:https://tianchi.aliyun.com/competition/entrance/531830/introduction
比赛要求参赛选手根据给定的数据集,建立模型,预测金融风险。
赛题以预测金融风险为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。
一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。 Tip:匿名特征,就是未告知数据列所属的性质的特征列。
字段表
Field | Description |
---|---|
id | 为贷款清单分配的唯一信用证标识 |
loanAmnt | 贷款金额 |
term | 贷款期限(year) |
interestRate | 贷款利率 |
installment | 分期付款金额 |
grade | 贷款等级 |
subGrade | 贷款等级之子级 |
employmentTitle | 就业职称 |
employmentLength | 就业年限(年) |
homeOwnership | 借款人在登记时提供的房屋所有权状况 |
annualIncome | 年收入 |
verificationStatus | 验证状态 |
issueDate | 贷款发放的月份 |
purpose | 借款人在贷款申请时的贷款用途类别 |
postCode | 借款人在贷款申请中提供的邮政编码的前3位数字 |
regionCode | 地区编码 |
dti | 债务收入比 |
delinquency_2years | 借款人过去2年信用档案中逾期30天以上的违约事件数 |
ficoRangeLow | 借款人在贷款发放时的fico所属的下限范围 |
ficoRangeHigh | 借款人在贷款发放时的fico所属的上限范围 |
openAcc | 借款人信用档案中未结信用额度的数量 |
pubRec | 贬损公共记录的数量 |
pubRecBankruptcies | 公开记录清除的数量 |
revolBal | 信贷周转余额合计 |
revolUtil | 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额 |
totalAcc | 借款人信用档案中当前的信用额度总数 |
initialListStatus | 贷款的初始列表状态 |
applicationType | 表明贷款是个人申请还是与两个共同借款人的联合申请 |
earliesCreditLine | 借款人最早报告的信用额度开立的月份 |
title | 借款人提供的贷款名称 |
policyCode | 公开可用的策略_代码=1新产品不公开可用的策略_代码=2 |
n系列匿名特征 | 匿名特征n0-n14,为一些贷款人行为计数特征的处理 |
竞赛采用AUC作为评价指标。AUC(Area Under Curve)被定义为 ROC曲线下与坐标轴围成的面积。
分类算法常见的评估指标如下:
对于金融风控预测类常见的评估指标如下:
KS(%) | 好坏区分能力 |
---|---|
20以下 | 不建议采用 |
20-40 | 较好 |
41-50 | 良好 |
51-60 | 很强 |
61-75 | 非常强 |
75以上 | 过于高,疑似存在问题 |
本部分为对于数据读取和指标评价的示例。
import pandas as pd # 导入包
# 读取csv文件
train = pd.read_csv('train.csv')
testA = pd.read_csv('testA.csv')
# 查看数据维度
print('Train data shape:', train.shape)
print('TestA data shape:', testA.shape)
# Train data shape: (800000, 47)
# TestA data shape: (200000, 48)
# 查看前5行数据
train.head()
id | loanAmnt | term | interestRate | installment | grade | subGrade | employmentTitle | employmentLength | homeOwnership | ... | n5 | n6 | n7 | n8 | n9 | n10 | n11 | n12 | n13 | n14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 35000.0 | 5 | 19.52 | 917.97 | E | E2 | 320.0 | 2 years | 2 | ... | 9.0 | 8.0 | 4.0 | 12.0 | 2.0 | 7.0 | 0.0 | 0.0 | 0.0 | 2.0 |
1 | 1 | 18000.0 | 5 | 18.49 | 461.90 | D | D2 | 219843.0 | 5 years | 0 | ... | NaN | NaN | NaN | NaN | NaN | 13.0 | NaN | NaN | NaN | NaN |
2 | 2 | 12000.0 | 5 | 16.99 | 298.17 | D | D3 | 31698.0 | 8 years | 0 | ... | 0.0 | 21.0 | 4.0 | 5.0 | 3.0 | 11.0 | 0.0 | 0.0 | 0.0 | 4.0 |
3 | 3 | 11000.0 | 3 | 7.26 | 340.96 | A | A4 | 46854.0 | 10+ years | 1 | ... | 16.0 | 4.0 | 7.0 | 21.0 | 6.0 | 9.0 | 0.0 | 0.0 | 0.0 | 1.0 |
4 | 4 | 3000.0 | 3 | 12.99 | 101.07 | C | C2 | 54.0 | NaN | 1 | ... | 4.0 | 9.0 | 10.0 | 15.0 | 7.0 | 12.0 | 0.0 | 0.0 | 0.0 | 4.0 |
5 rows × 47 columns
## 混淆矩阵
import numpy as np
from sklearn.metrics import confusion_matrix
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('混淆矩阵:\n', confusion_matrix(y_true, y_pred))
# 混淆矩阵:
# [[1 1]
# [1 1]]
## accuracy
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('ACC:', accuracy_score(y_true, y_pred))
# ACC: 0.5
## 精确率, 召回率, F1-score
from sklearn import metrics
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('Precision', metrics.precision_score(y_true, y_pred))
print('Recall', metrics.recall_score(y_true, y_pred))
print('F1-score:', metrics.f1_score(y_true, y_pred))
# Precision 0.5
# Recall 0.5
# F1-score: 0.5
## P-R曲线
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
precision, recall, thresholds = precision_recall_curve(y_true, y_pred)
plt.plot(precision, recall)
## ROC曲线
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
FPR, TPR, thresholds = roc_curve(y_true, y_pred)
plt.title('ROC')
plt.plot(FPR, TPR,'b')
plt.plot([0,1], [0,1], 'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
## AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:', roc_auc_score(y_true, y_scores))
# AUC socre: 0.75
## KS值:在实际操作时往往使用ROC曲线配合求出KS值
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 1, 1]
FPR, TPR, thresholds = roc_curve(y_true, y_pred)
KS = abs(FPR - TPR).max()
print('KS值:', KS)
# KS值: 0.5238095238095237
赛题理解是开始比赛的第一步,赛题的理解有助于对竞赛全局的把握。通过赛题理解有助于对赛题的业务逻辑把握,对于后期的特征工程构建和模型选择都尤为重要。
如今在银行、消费金融公司等各种贷款业务机构,普遍使用信用评分,对客户实行打分制,以期对客户有一个优质与否的评判
信用评分卡分A,B,C卡三类:
评分机制的区别在于:
信用评分是指根据银行客户的各种历史信用资料,利用一定的信用评分模型,得到不同等级的信用分数,根据客户的信用分数,授信者可以通过分析客户按时还款的可能性,据此决定是否给予授信以及授信的额度和利率。
虽然授信者通过人工分析客户的历史信用资料,同样可以得到这样的分析结果,但利用信用评分却更加快速、更加客观、更具有一致性。
以下代码是一个非标准评分卡的代码流程,用于刻画用户的信用评分。
# 评分卡:不是标准评分卡
def Score(prob, P0=600, PDO=20, badrate=None, goodrate=None):
P0 = P0
PDO = PDO
theta0 = badrate / goodrate
B = PDO / np.log(2)
A = P0 + B * np.log(2 * theta0)
score = A - B * np.log(prob / (1 - prob))
return score