- Time-LLM :超越了现有时间序列预测模型的学习器
福安德信息科技
AI预测大模型学习人工智能python大模型时序预测
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- NLP_jieba中文分词的常用模块
Hiweir ·
NLP_jieba的使用自然语言处理中文分词人工智能nlp
1.jieba分词模式(1)精确模式:把句子最精确的切分开,比较适合文本分析.默认精确模式.(2)全模式:把句子中所有可能成词的词都扫描出来,cut_all=True,缺点:速度快,不能解决歧义(3)paddle:利用百度的paddlepaddle深度学习框架.简单来说就是使用百度提供的分词模型.use_paddle=True.(4)搜索引擎模式:在精确模式的基础上,对长词再进行切分,提高召回率,
- 正确解决ModuleNotFoundError: No module named ‘paddle‘异常的有效解决方法
飞码创造者
解决bugpaddlebugpython开发语言
正确解决ModuleNotFoundError:Nomodulenamed‘paddle‘异常的有效解决方法文章目录报错问题报错原因解决方法报错问题ModuleNotFoundError:Nomodulenamed‘paddle‘异常报错原因ModuleNotFoundError:Nom
- 【Python】已解决:ModuleNotFoundError: No module named ‘paddle‘
屿小夏
pythonpaddle开发语言
文章目录一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例步骤1:安装PaddlePaddle库步骤2:验证安装五、注意事项已解决:ModuleNotFoundError:Nomodulenamed‘paddle‘一、分析问题背景在使用Python进行深度学习开发时,开发者可能会选择使用PaddlePaddle作为深度学习框架。然而,有时在导入PaddlePaddle库时,可能会遇
- 【Python】已解决:ModuleNotFoundError: No module named ‘paddle’
屿小夏
pythonpaddle开发语言
文章目录一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项已解决:ModuleNotFoundError:Nomodulenamed‘paddle’一、分析问题背景在Python编程中,ModuleNotFoundError是一个常见的错误,它通常发生在尝试导入一个不存在的模块时。本例中,错误消息Nomodulenamed'paddle’指出Python解释器无法找到名
- 【三】分布式训练---单机多卡与多机多卡组网(飞桨paddle2.0+)更加推荐spawn方式!
汀、人工智能
#飞桨AIstudio教学使用深度学习神经网络机器学习分布式计算分布式训练
1.单机多卡启动并行训练飞桨2.0增加paddle.distributed.spawn函数来启动单机多卡训练,同时原有的paddle.distributed.launch的方式依然保留。paddle.distributed.launch通过指定启动的程序文件,以文件为单位启动多进程来实现多卡同步训练。以前在aistudio脚本任务说明里,就是推荐这种方法启动多卡任务。launch这种方式对进程管理
- 百度飞桨paddle安装 包括CUDA,cuDNN,opencv的安装
小甲学长
opencv百度paddlepaddle
conda创建新环境这部分代码均在AnacondaPrompt中写,要求已有Anaconda第一步:创建condacreate--nameyourEnvpython=3.6–name:也可以缩写为【-n】,【yourEnv】是新创建的虚拟环境的名字,创建完,可以装anaconda的目录下找到envs/yourEnv目录python=2.7:是python的版本号。也可以指定为【python=3.6
- 使用paddlerocr识别固定颜色验证码
王小葱鸭
深度学习深度学习ocr
1引言本文使用opencv和paddlerocr识别出固定颜色的验证码,原理不解释,安装包的方法自行查找,只提供代码和思路。1使用opencv对特定颜色区域进行提取2使用paddlerocr识别并输出验证码2代码2.1读取图片,提取蓝色区域frompaddleocrimportPaddleOCRimportosimportcv2importnumpyasnp#读取图像image=cv2.imrea
- Python包的安装
weixin_38778542
Python包pythonanaconda
只是在包装paddlepaddle包的时候,使用官方推荐的命令使用安装失败。大概看了一下,是其他的一些支持的包安装失败,要么是找不到,要么是版本问题,要么是自己网速差……自己又看不明白,或者是静不下心来仔细去查找问题,所以开了这个帖子,希望来记录一下学习Python中,在关于一些包的安装使用上的问题。同时也欢迎大家参与讨论。现在正在安装paddlepaddle以及其支持的包,主要学习https:/
- 震惊!PaddlePaddle竟然支持Python 3.7了!
高斯纯牛奶
震惊!****PaddlePaddle****竟然支持****Python3.7****了!image这个2018,如果你还不知道这件事情,你就真的OUT了!几天之前,一条PaddlePaddle版本发布的消息,让开发者QQ群里的成员又惊又喜:PaddlePaddle支持了Python3.7。在外人看来,PaddlePaddle就像一位用情专一的“钢铁直男“,长久以来一直钟情于Python2.7,
- python与OCR识别的库存有哪些?
小九不会Python
#数据科学pythonocr开发语言
Python与OCR(光学字符识别)识别相关的库有多个,其中一些最常用和流行的库包括TesseractOCR(通过pytesseract接口)、EasyOCR、PaddleOCR等。下面将详细介绍这些库及其使用方法和部分详细参数。1.TesseractOCR(通过pytesseract接口)简介:Tesseract是一个由Google开发的开源OCR引擎,支持多种操作系统和语言。Python可以通
- PaddleOCR超大分辨率文本检测代码教程
LEILEI18A
Python深度学习paddlepaddleocrppocr超大分辨率文本检测
PaddleOCR超大分辨率文本检测代码教程目录1.前提2.PaddleOCR部署(win10下)3.解决思路和代码1.前提这是我提的issue:https://github.com/PaddlePaddle/PaddleOCR/issues/11888很多问题可以看:https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/doc/do
- 百度飞浆目标检测PPYOLOE模型在PC端、Jetson上的部署(python)
代码能跑就可以
百度目标检测python学习计算机视觉笔记
部署目标检测模型前,需要配置好paddlepaddle的环境:开始使用_飞桨-源于产业实践的开源深度学习平台(paddlepaddle.org.cn)PC端和Jetson板卡端的部署方法相同,如下(直接放置部署和测试代码):importpaddle.inferenceimportcv2importnumpyasnpimporttimefrompaddle.inferenceimportConfig
- 百度飞桨教程(一)
怎么这么多名字都被占了
百度paddlepaddle人工智能
百度飞桨(paddle),是一个开源的深度学习平台百度飞桨的安装pipinstallpaddlepaddle-ihttps://mirror.baidu.com/pypi/simple手写数字识别案例我们来通过一个案例,大概了解paddle的使用importpaddleimportnumpyasnpfrompaddle.vision.transformsimportNormalizetransfo
- PaddleDetection多目标跟踪报错MCMOTEvaluator is not exist, so the MOTA will be -INF
ATM006
目标检测
ppdet.metrics.mcmot_metricsWARNING:gt_filename'{}'ofMCMOTEvaluatorisnotexist,sotheMOTAwillbe-INFPaddleDetection/ppdet/metrics/mcmot_metrics.pyclassMCMOTEvaluator(object):def__init__(self,data_root,seq
- Python,Nuitka,打包Paddle和Paddleocr,test.dist\\paddle\\fluid\\..\\libs‘;
飞天小女警出击
pythonpaddle开发语言
Python版本3.9,Nuitka版本1.8.6,paddleocr版本2.6.1.3,paddlepaddle版本2.5.2Nuitka打包后提示报错File"C:\Users\Administrator\Desktop\XXX\XXX\test.dist\os.py",line1111,inadd_dll_directoryFileNotFoundError:[WinError2]系统找不到
- ubuntu18.04+cuda11.4+nccl安装
袁泽斌的学习记录
ubuntu
本文参考自,但更加详细的介绍了安装方法,避免走弯路ubuntu下安装nccl具体教程_ubuntu安装nccl-CSDN博客文章浏览阅读1w次,点赞5次,收藏12次。使用paddlepaddle框架进行多卡训练时报错:Traceback(mostrecentcalllast):File"train.py",line210,indo_train()File"train.py",line91,indo
- paddle nlp 3.0 全面拥抱开源大模型
路人与大师
paddle自然语言处理开源
首先安装神圣的飞桨自然语言处理框架3.0pipinstall--upgradepaddlenlp==3.0.0b0阿里云通义千问(Qwen2)系列大模型介绍阿里云通义千问(Qwen2)是阿里云推出的一系列先进的大型语言模型,涵盖了从轻量级到超大规模的各种模型,包括混合专家模型(Mixture-of-Experts,MoE)。Qwen2系列在多个自然语言处理任务上展现了卓越的性能,并且在一些基准测试
- 【Python】已解决:WARNING: Ignoring invalid distribution -addlepaddle (d:\soft\python36\lib\site-packages)
屿小夏
python开发语言
文章目录一、分析问题背景二、可能出错的原因三、错误代码示例四、正确解决方法五、注意事项已解决:WARNING:Ignoringinvaliddistribution-addlepaddle(d:\soft\python36\lib\site-packages)一、分析问题背景在使用Python进行开发时,有时我们在执行pip命令(如piplist或pipfreeze)查看已安装的Python包时,
- 飞桨科学计算套件PaddleScience
skywalk8163
人工智能paddlepaddle人工智能飞桨
PaddleScience是一个基于深度学习框架PaddlePaddle开发的科学计算套件,利用深度神经网络的学习能力和PaddlePaddle框架的自动(高阶)微分机制,解决物理、化学、气象等领域的问题。支持物理机理驱动、数据驱动、数理融合三种求解方式,并提供了基础API和详尽文档供用户使用与二次开发。安装当然要先安装好飞桨PaddlePaddle,再安装PaddleSciencepipinst
- RuntimeError: (PreconditionNotMet) The third-party dynamic library (cublas64_102.dll;cublas64_10.dll
xxxggany
pippaddlepaddle
校验paddle报错:RuntimeError:(PreconditionNotMet)Thethird-partydynamiclibrary(cublas64_102.dll;cublas64_10.dll)thatPaddledependsonisnotconfiguredcorrectly.C:\ProgramFiles\NVIDIAGPUComputingToolkit\CUDA\v10
- 基于ERNIR3.0文本分类的开发实践
wangqiaowq
人工智能
参考:基于ERNIR3.0文本分类:(KUAKE-QIC)意图识别多分类(单标签)-飞桨AIStudio星河社区(baidu.com)https://zhuanlan.zhihu.com/p/574666812?utm_id=0遇到的问题:如下采用paddleNLP下文本分类实例进行分类训练后发现生成的模型分类不准。打算自己开发脚本进行分类计算再进行服务化部署。基于ERNIR3.0文本分类任务模型
- tio-boot使用@Import 注解整合 paddle-ocr-server
javaocr后端
使用@Import注解整合paddle-ocr-serverpaddle-ocr-server是笔者开发的款ocr识别应用,开源地址,paddle-ocr-server完全基于tio-boot开发,所以可以非常方便的整合到tio-boot应用中编写pom.xml只需要添加tio-boot和paddle-ocr-server依赖UTF-81.8${java.version}${java.versio
- TechDay公开课实录:PaddlePaddle车牌识别实战和心得
PaddleWeekly
车牌识别作为一种常见的图像识别的应用场景,已经是一个非常成熟的业务了,在传统的车牌识别中,可以使用字符分割+字符识别的方式来进行车牌识别,而深度学习兴起后,出现了很多端到端的车牌识别模型,不用分割字符,直接输入车牌图片即可识别出车牌字符。2019年1月5日百度深度学习线下技术公开课PaddlePaddleTechDay第一期演讲则邀请了百度认证布道师胡晓曼老师分享基于PaddlePaddle最新版
- 基于Python的paddleocr推理环境列表
博观而约取,厚积而薄发
PaddlePaddlepython开发语言
基于Python的paddleocr推理环境列表,#Python==3.9.13,安装目录名不能太长#单独导入python-mpipinstallpaddlepaddle-gpu==2.6.0.post120-fhttps://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.htmlopencv-pythonlmdbimgaugscikit-i
- pip安装paddlepaddle报错ERROR: Could not install packages due to an OSError
博观而约取,厚积而薄发
PaddlePaddlepip
ERROR:CouldnotinstallpackagesduetoanOSError:[Errno2]Nosuchfileordirectory:'C:\\Users\\yang\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Pyt
- PaddleSeg分割框架解读[01] 核心设计解析
我是天才很好
PaddleSeg使用及其解析深度学习人工智能神经网络python
文章目录PaddleSeg分割框架解读[01]核心设计解析tools/train.pypaddleseg/cvlibs/config.pypaddleseg/cvlibs/builder.pypaddleseg/cvlibs/manager.pyPaddleSeg分割框架解读[01]核心设计解析tools/train.pyimportargparseimportrandomimportnumpya
- 利用PaddleNLP进行文本数据脱敏
weixin_37763484
python数据挖掘深度学习数据挖掘自然语言处理深度学习paddle
最近在脱敏一些客服数据,同事用正则进行了一些处理,但是感觉针对人名、数量等信息还是无法处理,例如“北方种植了很多李子树”,李子树有可能被识别为人名,又如“美国采购坦克1005台,价值4500万比索”,如果之前的正则中没有“台”和“比索”两个词汇,就无法识别。如果在脱敏过程中忽略了人名、数量等信息,可能造成严重后果。因此尝试使用了paddlenlp中的taskflow进行处理。主要思路就是利用ner
- paddlepaddle 2.6版本在WSL2环境中如何使用NVIDIA显卡运行神经网络
kampoo
paddlepaddle神经网络人工智能
paddlepaddle2.6版本发布后,官网上可以使用NVIDIAcuda12.x进行机器学习了,训练神经网络的效率大为提升。因为是在wsl2环境中安装,不是纯正的linux环境,其中一些小问题需要注意。使用conda安装飞浆,wsl2中安装了cuda12.x,跟飞浆2.6兼容,按照官网指令即可:condacreate-npp2cudapython=3.11condaactivatepp2cud
- 概率论与数理统计实验 附源码及实验报告 可打包为exe
货又星
概率论经验分享笔记python开源
Hi,I’m@货又星I’minterestedin…I’mcurrentlylearning…I’mlookingtocollaborateon…Howtoreachme…README目录(持续更新中)各种错误处理、爬虫实战及模板、百度智能云人脸识别、计算机视觉深度学习CNN图像识别与分类、PaddlePaddle自然语言处理知识图谱、GitHub、运维…WeChat:1297767084GitH
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,