- python JSON Lines (JSONL)的保存和读取;jsonl的数据保存和读取,大模型prompt文件保存常用格式
医学小达人
常用算法NLPpromptJSONLinesJSONLjsonljsonl文件保存读取
1.JSONLines(JSONL)文件保存将一个包含多个字典的列表保存为JSONLines(JSONL)格式的文件,每个字典对应一个JSONL文件中的一行。以下是如何实现这一操作的Python代码importjson#定义包含字典的列表data=[{"id":1,"name":"Alice","age":30,"email":"
[email protected]"},{"id":2,"name"
- 基于YOLOv8的Web端交互式目标检测系统设计与实现
YOLO实战营
YOLO前端目标检测人工智能ui目标跟踪计算机视觉
1.引言目标检测是计算机视觉领域的一项重要任务,它在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。近年来,随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列算法因其出色的速度和精度平衡而备受关注。本文将详细介绍如何基于最新的YOLOv8模型构建一个Web端交互式目标检测系统,包含完整的UI界面设计和数据集处理流程。本系统将实现以下功能:基于YOLOv8的高效目标检测
- 使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现
神经网络15044
算法python分类矩阵人工智能数据挖掘深度学习
使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景实例分割是计算机视觉领域的重要任务,它要求模型不仅要检测图像中的对象,还要精确地分割出每个对象的像素级掩码。近年来,基于Transformer的模型在实例分割任务上取得
- 「2022青创繁星跨年大课复盘05」创业路上,不懂这个思考方法,也许会耗费你很多时间精力!
米娅成长日记
“我们面临的局面不是缺少思想,而往往是缺乏对思想的实施。对于每一个得到实施的思想,都有成千上万个思想未能得到贯彻落实。”——FredmundMalik《管理成就生活》理念想法再好,没有执行就等于零!!道理谁都懂,其实很多人总是选择等待,然后错失机会~“四位一体”的稳赢思考模型中,有基于时代的策略分析、战略分析以及组织设计,这3个思考点非常重要,但其终归都属于想法层面的,它们只是脑中“蓝图”。蓝图设
- 059|不问为什么而做,都是在“行尸走肉”
独行侠i
今天做的有价值的成果?1.学习Tom教练的目标管理课程,内容接地气,精髓,但延伸得有点少。2.雍湖湾外框模型基本成形,小有成就,不错!3.即看即讲《习惯人生》,自己老是把牛跟马混淆。上菜!反思有时候会给自己盲目的定下许许多多的目标,亦或者觉得应该定目标,但定目标的背后我们都少有去思考一个问题,为什么而做?举个栗子今天上边这张图是我昨晚上给今天的自己定的小目标,里边第1条是“幕布梳理知识”,但其实我
- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- python分布式事务_分布式事务系列(2.1)分布式事务的概念
#1系列目录#2X/OpenDTPDTP全称是DistributedTransactionProcess,即分布式事务模型。之前我们接触的事务都是针对单个数据库的操作,如果涉及多个数据库的操作,还想保证原子性,这就需要使用分布式事务了。而X/OpenDTP就是一种分布式事务处理模型。##2.1X/OpenDTP模型X/Open是一个组织,维基百科上这样说明:X/Open是1984年由多个公司联合创
- 【提示词优化技巧】利用大模型进行提示词自优化
weixin_37763484
大模型人工智能
看到一篇帖子,里面记录了如下的提示词优化技术,我使用ai进行了解读。整体来看,这个方法非常合理,能减少人工干预,值得试一试。原始方法如下:1.主题:构建高效Prompt的系统化流程:一种元提示工程方法在与大型语言模型(LLM)的交互中,提示词(Prompt)的质量直接决定了输出的上限。传统的Prompt撰写高度依赖工程师的经验和直觉,缺乏一套系统化的构建与优化流程,导致效率瓶颈和质量波动。本文提出
- 从0构建 HarmonyOS 本地语音识别项目:Whisper 完整落地教程
观熵
国产大模型部署实战全流程指南harmonyos语音识别whisper深度学习机器学习
第一章:鸿蒙手机语音识别项目实战(基于Whisper本地推理)项目目标:构建一个可以在鸿蒙系统手机本地运行的语音识别应用,使用Whisper模型识别用户语音为文字,全程无需联网。1.为什么要在鸿蒙手机本地部署语音识别?在很多移动场景下(驾驶、弱网环境、隐私敏感场景等),云端语音识别存在如下痛点:⏳网络延迟高、体验割裂⚠️数据隐私风险大网络依赖强,弱网/无网直接无法使用而将语音识别模型部署在鸿蒙设备
- 网络参考模型以及各层对应的协议
窗外千纸鹤
网络网络网络协议
网络参考模型在互联网中实际使用的是TCP/IP参考模型。实际存在的协议主要包括在:物理层、数据链路层、网络层、传输层和应用层。各协议也分别对应这5个层次而已。【1】物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换),这一层的数据叫做
- 如何构建高效的向量数据库以优化大模型检索能力
学习ing1
数据库
1.构建向量数据库的基础架构1.1确定数据存储需求构建高效的向量数据库以优化大模型检索能力,首先要明确数据存储需求。大模型通常涉及海量的参数和数据,例如一个拥有10亿参数的模型,其存储需求可能达到数百GB。根据数据的规模和类型,需要确定存储的容量、速度和可靠性。对于大规模数据,分布式存储是常见的选择,它可以将数据分散存储在多个节点上,提高存储效率和数据访问速度。同时,数据的读写频率也是重要因素,高
- LLM初识
从零到一:用Python和LLM构建你的专属本地知识库问答机器人摘要:随着大型语言模型(LLM)的兴起,构建智能问答系统变得前所未有的简单。本文将详细介绍如何使用Python,结合开源的LLM和向量数据库技术,一步步搭建一个基于你本地文档的知识库问答机器人。你将学习到从环境准备、文档加载、文本切分、向量化、索引构建到最终实现问答交互的完整流程。本文包含详细的流程图描述、代码片段思路和关键注意事项,
- 大模型——TRAE+Milvus MCP 自然语言就能搞定向量数据库
不二人生
大模型milvus数据库trae大模型
大模型——TRAE+MilvusMCP自然语言就能搞定向量数据库不久前,继Cursor和ClaudeDesktop在海外市场掀起智能编程浪潮后,字节跳动TRAE海外版也进入了付费模式。相较前两款海外产品,TRAE集成了代码补全、智能问答和Agent模式之外,还可以为中文开发者带来本土化的智能编程体验。恰逢其时,MilvusMCP服务器新增了SSE(Server-SentEvents)支持。相比传统
- 大语言模型:人像摄影的“达芬奇转世”?——从算法解析到光影重塑的智能摄影革命
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
导言在摄影术诞生之初,达芬奇或许无法想象,他对于光影、比例和解剖的严谨研究,会在数百年后以另一种形式重生。今天,当摄影师面对复杂的光线环境或苦苦寻找最佳构图时,一位由代码构筑的“光影军师”正悄然降临——大语言模型(LLM)正以前所未有的方式,重塑人像摄影的创作边界。解构经典:大语言模型如何“消化”百年摄影智慧大语言模型并非凭空创造建议,其根基在于对海量摄影知识体系的深度理解与结构化重组。理论内化:
- 【速通RAG实战:数据库】6.RAG向量数据库原理
无心水
速通RAG实战!解锁AI2.0高薪密码速通RAG实战RAG快速开发实战RAGRAG向量数据库相似度FAISSChroma
在RAG(检索增强生成)系统中,向量数据库扮演着至关重要的角色,它负责存储文本经过Embedding处理后的向量表示,并能高效地进行向量检索,以找出与查询向量最相似的文档。1.向量数据库原理1.向量表示在RAG系统里,文本首先会通过Embedding模型(如OpenAIEmbeddings、SentenceTransformers等)转化为固定维度的向量。这些向量能够捕捉文本的语义信息,使得语义相
- LangChain4j入门:Java开发者的AI应用开发指南
半夜偷你家裤衩子
LangChain4jjava人工智能开发语言LangChain4j
在AI浪潮席卷全球的今天,Java开发者如何快速上手大语言模型应用开发?LangChain4j为我们提供了完美的解决方案!前言:为什么Java开发者需要LangChain4j?想象一下,你正在开发一个企业级应用,需要集成ChatGPT来提供智能客服功能。传统方式需要直接调用OpenAIAPI,处理复杂的HTTP请求、错误重试、上下文管理等问题。而使用LangChain4j,几行代码就能搞定:Cha
- 深入解析部分可观测马尔可夫决策过程(POMDP)及其应用
码字的字节
算法人工智能马尔可夫决策过程POMDP
POMDP的基本概念与模型部分可观测马尔可夫决策过程(PartiallyObservableMarkovDecisionProcess,POMDP)是强化学习领域中处理不完全信息环境的核心数学模型。与完全可观测的马尔科夫决策过程(MDP)相比,POMDP更贴近现实世界中智能体面临的感知局限,其核心特征在于系统状态无法被直接观测,智能体必须通过间接的观测信号来推断潜在状态。POMDP的七元组模型PO
- 全球软件技术峰会 2025:聚焦大模型开发、智能运维与架构创新,共赴技术实战盛宴
向日葵也有悲伤
运维架构推荐算法数据结构大数据数据库架构
全球软件技术峰会2025:聚焦大模型开发、智能运维与架构创新,共赴技术实战盛宴在软件定义未来的时代,人工智能与数字化技术正以颠覆性力量重塑全球产业格局。2025年8月15-16日,以"全球专家、卓越智慧"为宗旨的全球软件技术峰会将盛大启幕,特邀全球近50位来自微软、谷歌、亚马逊、字节跳动等企业的技术领袖及一线实战专家,围绕大模型智能应用开发、AI与ML智能运维、软件开发智能化、架构设计与演进四大核
- 销售易发布中国首款AI CRM,纷享销客什么时候能抄上作业
wq54wq
人工智能
在数字化转型的深水区,客户关系管理、系统已成为企业增长的核心基础设施,一家可以与企业共同成长的CRM厂商才能跟上企业业务的快速发展,帮助企业实现高质量增长。2025年3月19日,销售易在腾讯云城市峰会上高调发布中国首款AICRM产品——NeoAgent。这款融合了腾讯混元大模型与DeepSeek开源技术的智能体矩阵,不仅重新定义了CRM的交互逻辑,更将行业竞争推向了“使技术真正回归赋能业务的本质”
- 零信任安全:重塑网络安全架构的革命性理念
scuter_yu
安全web安全架构
一、核心理念零信任安全的核心理念是“永不信任,持续验证”(NeverTrust,AlwaysVerify)。这一理念认为,任何用户、设备或应用程序无论处于网络内部还是外部,都不应被默认信任。与传统的基于边界的安全模型不同,零信任模型假设网络内部和外部都存在潜在威胁,因此对每一次访问请求都进行严格的身份验证和授权。二、核心原则零信任安全遵循以下核心原则:持续验证:对用户和设备进行持续的身份验证,确保
- 【Tomcat】Tomcat线程池深度调优手册(终极版)
夜雨hiyeyu.com
javatomcatjavajvmspringspringbootnginxapache
Tomcat线程池深度调优手册(终极版)一、Tomcat线程池架构全解析二、精准参数计算公式(带场景适配)三、线程池溢出故障树分析四、生产环境全链路调优五、极限性能压测方案六、特殊场景应对策略七、调优禁忌清单八、调优效果验证一、Tomcat线程池架构全解析三层处理模型accept队列任务分发响应TCP层NIO线程业务线程池网络层TCP层:内核维护的SYN队列(受net.core.somaxconn
- 大模型 Function Calling 中的两种参数传入方式对比——为什么建议tools方式传参而不建议system message传参
John_今天务必休息一天
大模型智能体大模型functioncall人工智能
大模型FunctionCalling中的两种参数传入方式对比——为什么建议tools方式传参而不建议systemmessage传参一、设计定位与功能匹配度不同二、结构化vs非结构化:影响工具调用的准确性三、分离关注点:降低维护成本与逻辑混淆四、模型优化适配:专用参数的可靠性更高总结在大模型(如千问)的工具调用场景中,建议通过tools参数传入调用函数信息,而非通过SystemMessage传入,核
- AI产品经理面试宝典第45天:AI应用设计与伦理隐私问题应对指南
TGITCIC
AI产品经理一线大厂面试题产品经理AI面试大模型面试AI产品经理面试大模型产品经理面试AI产品大模型产品
如何提升AI产品的用户体验?问:如何提升AI产品的用户体验?答:用户体验优化需从三个维度突破:数据质量、交互逻辑、反馈机制。首先确保训练数据覆盖真实场景长尾需求,例如智能客服需采集方言、行业术语等特殊语料。其次设计渐进式交互路径,如医疗影像诊断产品采用"一键初筛-人工复核-历史对比"三段式流程。最后建立动态反馈闭环,通过埋点采集用户行为数据,结合A/B测试持续迭代模型输出结果。专业指导此题考察产品
- 背靠腾讯的销售易,发布中国首款AI CRM,纷享销客接下来怎么办
CC_54321
人工智能
在数字化转型的深水区,客户关系管理、系统已成为企业增长的核心基础设施,一家可以与企业共同成长的CRM厂商才能跟上企业业务的快速发展,帮助企业实现高质量增长。2025年3月19日,销售易在腾讯云城市峰会上高调发布中国首款AICRM产品——NeoAgent。这款融合了腾讯混元大模型与DeepSeek开源技术的智能体矩阵,不仅重新定义了CRM的交互逻辑,更将行业竞争推向了“使技术真正回归赋能业务的本质”
- 财富进化之路,永无止境 2020.03.20 超有才华第322次百字悟
超有才华
猫叔五堂课的最后一次分享,是讲自己的成长历程的谈心。1、多输出《大话西游》唐僧台词很有趣:你想要啊?悟空,你要是想要的话你就说话嘛,虽然你很有诚意地看着我,你不说我怎么知道你想要呢。输出有价值的内容,让别人快速理解并践行才有用。2、多输入米瑟大大讲过:我们无法给别人,我们自己没有的东西。定位冠军战略教练,需要具备多元思维模型和素材,胸无点墨,画不出波澜壮阔。3、卖经验什么成就了你,你用来成就别人,
- 微软CEO Satya Nadella提出AI重构法则:从范式跃迁到社会盈余
TGITCIC
AI-大模型的落地之道AI大模型大模型AIAIAgentAI智能体AI落地大模型落地
1.范式跃迁:AI作为第四次技术革命的核心驱动力1.1技术代际的复合效应从客户端到互联网、移动互联网再到云计算,技术平台的演进始终遵循“平台变革→产品跃迁→反哺平台”的螺旋上升逻辑。AI的特殊性在于其叠加了前三代技术的基础设施能力:云计算:提供百亿级参数模型的分布式训练能力互联网:构建全球数据流动与反馈闭环移动终端:扩展AI服务的触达边界技术范式核心特征代表产品对AI的支撑作用客户端本地化计算Wi
- LangChain 源码剖析(二):LangChain 流程编排的核心骨架——Chain 基类源码剖析
ATM006
人工智能langchain大模型Agent
每一篇文章都短小精悍,不啰嗦。在LangChain框架中,Chain是连接各种组件(模型、工具、数据库等)的核心骨架,负责将多个步骤按逻辑串联成可执行的工作流。无论是简单的「提问-回答」流程,还是复杂的「检索-思考-工具调用」pipeline,都依赖Chain基类提供的基础能力。本文将从架构设计、核心功能到实现细节,全面解析这一基类的设计智慧。一、架构定位:为什么需要Chain基类?Chain基类
- 大数据领域 Kafka 入门指南:从安装到基础使用
大数据洞察
大数据与AI人工智能大数据kafkalinqai
大数据领域Kafka入门指南:从安装到基础使用关键词:Kafka、消息队列、分布式系统、大数据处理、实时数据流、生产者消费者模型、ZooKeeper摘要:本文是一篇全面介绍ApacheKafka的入门指南,从基本概念到实际应用。我们将详细讲解Kafka的核心架构、工作原理,并提供从安装配置到基础使用的完整实践指导。文章包含Kafka的生产者-消费者模型实现、集群部署策略、性能优化技巧,以及在大数据
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- Microsoft Powerpoint for Mac 2021 中文破解版 (幻灯片演示文稿制作)
1f40c7e94f60
软件介绍/功能MicrosoftPowerPoint2021forMac破解版是办公必备的软件之一,作为知名的幻灯片演示文稿制作软件,这次的PowerPoint2021破解版改进和新增不少功能,比如@提及功能、墨迹绘制、3D模型插入等,功能更加完善,制作PPT怎么能少的了这款PowerPoint2021破解版,欢迎各位下载PowerPoint2021mac版体验全新功能!软件地址:macdwn.s
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比