spark的wordcount创建了几个RDD

wordcount代码很简单,先贴出来

val conf = new SparkConf().setAppName("ScalaWordCount").setMaster("local[4]")
    val sc = new SparkContext(conf)

    val lines: RDD[String] = sc.textFile("C:\\Users\\Desktop\\word.txt")
    //切分压平
    val words: RDD[String] = lines.flatMap(_.split(" "))
    //将单词和一组合
    val wordAndOne: RDD[(String, Int)] = words.map((_, 1))
    //按key进行聚合
    val reduced:RDD[(String, Int)] = wordAndOne.reduceByKey(_+_)
    //排序
    //val sorted: RDD[(String, Int)] = reduced.sortBy(_._2, false)
    //将结果保存到HDFS中
    reduced.saveAsTextFile(args(1))
//    sorted.collect().foreach{println}
    //释放资源
    sc.stop()

1.我们逐一来看,首先是sc.textFile,源码如下

/**
   * Read a text file from HDFS, a local file system (available on all nodes), or any
   * Hadoop-supported file system URI, and return it as an RDD of Strings.
   * @param path path to the text file on a supported file system
   * @param minPartitions suggested minimum number of partitions for the resulting RDD
   * @return RDD of lines of the text file
   */
  def textFile(
      path: String,
      minPartitions: Int = defaultMinPartitions): RDD[String] = withScope {
    assertNotStopped()
    hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
      minPartitions).map(pair => pair._2.toString).setName(path)
  }

 def hadoopFile[K, V](
      path: String,
      inputFormatClass: Class[_ <: InputFormat[K, V]],
      keyClass: Class[K],
      valueClass: Class[V],
      minPartitions: Int = defaultMinPartitions): RDD[(K, V)] = withScope {
    assertNotStopped()

    // This is a hack to enforce loading hdfs-site.xml.
    // See SPARK-11227 for details.
    FileSystem.getLocal(hadoopConfiguration)

    // A Hadoop configuration can be about 10 KB, which is pretty big, so broadcast it.
    val confBroadcast = broadcast(new SerializableConfiguration(hadoopConfiguration))
    val setInputPathsFunc = (jobConf: JobConf) => FileInputFormat.setInputPaths(jobConf, path)
    new HadoopRDD(
      this,
      confBroadcast,
      Some(setInputPathsFunc),
      inputFormatClass,
      keyClass,
      valueClass,
      minPartitions).setName(path)
  }

@DeveloperApi
class HadoopRDD[K, V](
    sc: SparkContext,
    broadcastedConf: Broadcast[SerializableConfiguration],
    initLocalJobConfFuncOpt: Option[JobConf => Unit],
    inputFormatClass: Class[_ <: InputFormat[K, V]],
    keyClass: Class[K],
    valueClass: Class[V],
    minPartitions: Int)
  extends RDD[(K, V)](sc, Nil) with Logging{
  ...(此处省略)
}

由此可以看出textFile方法内部生成了一个HadoopRDD,格式为K,V,然后进行了map操作,即上图textFile方法中的
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text], minPartitions)
.map(pair => pair._2.toString).setName(path)
这个pair 就是HadoopRDD的KV数据集,k为偏移量,v在这里为该行数据

2.map方法也会返回一个新的RDD,我们看下map方法源码

// Transformations (return a new RDD)

  /**
   * Return a new RDD by applying a function to all elements of this RDD.
   */
  def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
  }

这里返回的MapPartitionsRDD即lines: RDD[String],因此该步骤产生了两个RDD。
下面我们看flatMap方法

/**
   *  Return a new RDD by first applying a function to all elements of this
   *  RDD, and then flattening the results.
   */
  def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
  }

这里返回了一个新的RDD。
3.下面是words.map((_, 1))方法,这里调用map方法生成一个新的RDD。

4.接下来看reduceByKey方法

/**
   * Merge the values for each key using an associative and commutative reduce function. This will
   * also perform the merging locally on each mapper before sending results to a reducer, similarly
   * to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/
   * parallelism level.
   */
  def reduceByKey(func: (V, V) => V): RDD[(K, V)] = self.withScope {
    reduceByKey(defaultPartitioner(self), func)
  }


/**
   * Merge the values for each key using an associative and commutative reduce function. This will
   * also perform the merging locally on each mapper before sending results to a reducer, similarly
   * to a "combiner" in MapReduce.
   */
  def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
    combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
  }


 @Experimental
  def combineByKeyWithClassTag[C](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
    require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
    if (keyClass.isArray) {
      if (mapSideCombine) {
        throw new SparkException("Cannot use map-side combining with array keys.")
      }
      if (partitioner.isInstanceOf[HashPartitioner]) {
        throw new SparkException("HashPartitioner cannot partition array keys.")
      }
    }
    val aggregator = new Aggregator[K, V, C](
      self.context.clean(createCombiner),
      self.context.clean(mergeValue),
      self.context.clean(mergeCombiners))
    if (self.partitioner == Some(partitioner)) {
      self.mapPartitions(iter => {
        val context = TaskContext.get()
        new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
      }, preservesPartitioning = true)
    } else {
      new ShuffledRDD[K, V, C](self, partitioner)
        .setSerializer(serializer)
        .setAggregator(aggregator)
        .setMapSideCombine(mapSideCombine)
    }
  }

可以看到,这里生成了一个新的ShuffledRDD

5.saveAsTextFile方法

def saveAsTextFile(path: String): Unit = withScope {
    // https://issues.apache.org/jira/browse/SPARK-2075
    //
    // NullWritable is a `Comparable` in Hadoop 1.+, so the compiler cannot find an implicit
    // Ordering for it and will use the default `null`. However, it's a `Comparable[NullWritable]`
    // in Hadoop 2.+, so the compiler will call the implicit `Ordering.ordered` method to create an
    // Ordering for `NullWritable`. That's why the compiler will generate different anonymous
    // classes for `saveAsTextFile` in Hadoop 1.+ and Hadoop 2.+.
    //
    // Therefore, here we provide an explicit Ordering `null` to make sure the compiler generate
    // same bytecodes for `saveAsTextFile`.
    val nullWritableClassTag = implicitly[ClassTag[NullWritable]]
    val textClassTag = implicitly[ClassTag[Text]]
    val r = this.mapPartitions { iter =>
      val text = new Text()
      iter.map { x =>
        text.set(x.toString)
        (NullWritable.get(), text)
      }
    }
    RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)
      .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path)
  }

这里调用了mapPartitions方法,该方法会返回一个新的RDD

/**
   * Return a new RDD by applying a function to each partition of this RDD.
   *
   * `preservesPartitioning` indicates whether the input function preserves the partitioner, which
   * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
   */
  def mapPartitions[U: ClassTag](
      f: Iterator[T] => Iterator[U],
      preservesPartitioning: Boolean = false): RDD[U] = withScope {
    val cleanedF = sc.clean(f)
    new MapPartitionsRDD(
      this,
      (context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(iter),
      preservesPartitioning)
  }

流程图如下:


SparkWordCount执行过程.png

由上面可见总共生成了6个RDD。

你可能感兴趣的:(spark的wordcount创建了几个RDD)