- 基于PyTorch和ResNet18的花卉识别实战(附完整代码)
意.远
pytorch人工智能python深度学习
一、项目背景与效果花卉分类是计算机视觉的经典任务。本文使用PyTorch框架,基于ResNet18模型实现了102种花卉的分类任务。完整代码可直接复制运行,最终验证集准确率达8.2%,文中同步分析性能瓶颈与优化方案。二、环境配置与数据准备1.环境要求#主要依赖库importtorchfromtorchimportnn,optimfromtorchvisionimporttransforms,dat
- PyTorch 深度学习博客
Zoro|
PyTorchDeepLearning人工智能
PyTorch深度学习博客欢迎来到我的PyTorch深度学习博客!在这里,我将分享使用PyTorch学习和实践深度学习项目的点滴经验。本博客适用于初学者和有一定基础的开发者,旨在帮助大家快速搭建环境、掌握核心概念,并通过实例了解实际应用。环境配置为了确保项目的稳定性和兼容性,我选择了Python3.9环境,并在conda创建的虚拟环境中运行最新且稳定的PyTorch版本2.6.0。1.创建Pyth
- 深入探索 PyTorch 在语音识别中的应用
Zoro|
PyTorchDeepLearning机器学习pytorch语音识别人工智能
深入探索PyTorch在语音识别中的应用在本篇博客中,我将分享如何使用PyTorch进行语音识别任务,重点围绕环境配置、数据预处理、特征提取、模型设计以及模型比较展开。本文基于最近一次机器学习作业(HW2)的任务内容,任务目标是对语音信号进行逐帧音素预测,从而完成多类别分类任务。一、介绍任务背景任务目标:利用深度神经网络对语音信号进行逐帧音素预测。音素定义:音素是语音中能够区分单词的最小语音单位。
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- 深度学习框架PyTorch——从入门到精通(4)数据转换
Fansv587
Torch框架学习深度学习pytorch人工智能python经验分享
转换(Transforms)很多时候,数据并不总是以训练机器学习算法所需的最终处理形式出现。所以我们需要使用变换对数据进行一些处理,使其适合训练。所有TorchVision数据集都有两个参数——transform来修改特征,target_transform来修改标签——接受包含转换逻辑的可调用项。torchvision.transform模块提供了几个开箱即用的转换。FashionMNIST数据集
- 深度学习框架PyTorch——从入门到精通(5)构建神经网络
Fansv587
Torch框架学习深度学习pytorch神经网络经验分享
构建神经网络获取训练设备定义类模型层nn.Flattennn.Linearnn.ReLUnn.Sequentialnn.Softmax模型参数补充说明argmax神经网络是由一些层或者模块组成的,这些层和模块会对数据进行各种操作。在PyTorch里,torch.nn这个命名空间提供了你搭建自己神经网络所需要的所有基础组件。PyTorch里的每一个模块都是nn.Module类的子类。一个神经网络本身
- pytorch小记(十二):pytorch中 masked_fill_() vs. masked_fill() 详解
墨绿色的摆渡人
pythonpytorch小记pytorch人工智能python
pytorch小记(十二):pytorch中masked_fill_()vs.masked_fill()详解PyTorch`masked_fill_()`vs.`masked_fill()`详解1️⃣`masked_fill()`和`masked_fill_()`的作用2️⃣`masked_fill()`vs.`masked_fill_()`示例3️⃣输出结果4️⃣`masked_fill()`v
- pytorch小记(十):pytorch中torch.tril 和 torch.triu 详解
墨绿色的摆渡人
pythonpytorch小记pytorch人工智能python
pytorch小记(十):pytorch中torch.tril和torch.triu详解PyTorch`torch.tril`和`torch.triu`详解1.`torch.tril`(计算下三角矩阵)作用语法参数示例`diagonal`参数`torch.tril`的应用2.`torch.triu`(计算上三角矩阵)作用语法参数示例`diagonal`参数3.`torch.tril`vs`torc
- Pytorch torch.prod函数介绍
qq_27390023
pytorch人工智能python
torch.prod是PyTorch库中的一个函数,用于计算输入张量中所有元素或者指定维度上元素的乘积。下面将从函数的基本语法、参数、返回值、使用示例几个方面进行详细介绍。基本语法torch.prod(input,dim=None,keepdim=False,dtype=None)参数input:必需参数,是一个输入的PyTorch张量,函数将对这个张量的元素进行乘积计算。dim:可选参数,指定要
- 深度学习框架PyTorch——从入门到精通(5)自动微分
Fansv587
深度学习pytorch人工智能
使用torch.autograd自动微分张量、函数和计算图计算梯度禁用梯度追踪关于计算图的更多信息张量梯度和雅可比乘积在训练神经网络时,最常用的算法是反向传播。在该算法中,参数(模型权重)根据损失函数的梯度相对于给定参数进行调整。为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持为任何计算图自动计算梯度。考虑最简单的一层神经网络,具有输入x、参数w和b以
- 深度学习中的Channel,通道数是什么?
%KT%
深度学习深度学习人工智能
参考文章:直观理解深度学习的卷积操作,超赞!-CSDN博客如何理解卷积神经网络中的通道(channel)_神经网络通道数-CSDN博客深度学习-卷积神经网络—卷积操作详细介绍_深度卷积的作用-CSDN博客正文:在跑深度学习代码的过程中,经常遇到的一个报错是:模型尺寸不匹配的问题。一般pytorch中尺寸/张量的表现方式是:torch.size([16,3,24,24])。这四个参数的含义如下:16
- python,squeeze的详细解释,代码并进行解释
资源存储库
笔记算法python开发语言
目录python,squeeze的详细解释,代码并进行解释Python中的squeeze操作主要作用:PyTorch中的squeeze示例1:去除所有单维度示例2:指定去除维度NumPy中的squeeze示例1:去除所有单维度示例2:指定去除维度何时使用squeeze?总结python,squeeze的详细解释,代码并进行解释Python中的squeeze操作Squeeze是一个用于去除张量或数组
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- PyTorch 深度学习实战(17):Asynchronous Advantage Actor-Critic (A3C) 算法与并行训练
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们深入探讨了SoftActor-Critic(SAC)算法及其在平衡探索与利用方面的优势。本文将介绍强化学习领域的重要里程碑——AsynchronousAdvantageActor-Critic(A3C)算法,并展示如何利用PyTorch实现并行化训练来加速学习过程。一、A3C算法原理A3C算法由DeepMind于2016年提出,通过异步并行的多个智能体(Worker)与环境交互
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
wlz249
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- llama-factory微调
AI Echoes
深度学习人工智能机器学习deepseek
大模型微调实操--llama-factoryllama-factory环境安装前置准备英伟达显卡驱动更新地址下载NVIDIA官方驱动|NVIDIAcuda下载安装地址CUDAToolkit12.2Downloads|NVIDIADeveloperpytorch下载安装地址PreviousPyTorchVersions|PyTorchllama-factory项目和文档地址https://githu
- TorchServe详解和应用
易之阴阳
机器学习人工智能深度学习pythonTorchserver
TorchServer是PyTorch的一个组件,它是一个轻量级的服务框架,用于部署和管理PyTorch模型,以便在生产环境中提供高效、可扩展的推理服务。TorchServer提供了RESTfulAPI,可以方便地与其他系统集成,支持模型热加载和热更新,确保模型的快速部署和更新。以下是TorchServer的一些关键特性:模型注册和管理:用户可以通过API注册模型,指定模型的路径、输入输出规范和所
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- 学习pytorch
阿什么名字不会重复呢
学习pytorch人工智能
学习PyTorch是一个很好的选择,尤其是如果你对深度学习和机器学习感兴趣。以下是一个详细的学习计划,可以帮助你系统地掌握PyTorch的基本概念和应用。学习计划概览学习周期:8周(每周约4-5小时)目标:掌握PyTorch基础,能够实现简单的深度学习模型。第1周:基础知识目标:了解深度学习的基础知识,掌握Python和NumPy基础。任务:学习Python基础(数据类型、控制流、函数、类)。资源
- Pytorch 小记 第八回:GoogleNet卷积神经网络模型代码
Start_Present
pytorchcnn神经网络分类python深度学习
本次小记,提供了一份基于pytorch的GoogleNet卷积神经网络模型的代码。除此之外,对代码中不容易理解的部分进行了讲解。本代码的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu118,d2l的版本是1.0.3importnumpyasnpimporttorchfromtorchimportnnfromtorchv
- pytorch的使用:卷积神经网络模块
樱花的浪漫
pytorchcnnpytorch深度学习计算机视觉
1.读取数据分别构建训练集和测试集(验证集)DataLoader来迭代取数据使用transforms将数据转换为tensor格式#定义超参数input_size=28#图像的总尺寸28*28num_classes=10#标签的种类数num_epochs=3#训练的总循环周期batch_size=64#一个撮(批次)的大小,64张图片#训练集train_dataset=datasets.MNIST(
- PyTorch 模型剪枝实例教程一、非结构化剪枝
小风_
模型压缩与加速pytorchpytorch深度学习人工智能
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)4.总结目前大部分最先进的(SOTA)深度学习技术虽然效果好,但由于其模型参数量和计算量过高,难以用于实际部署。而众所周知,生物神经网络使用高效的稀疏连接(生物大脑神经网络balabala啥的都是稀疏连接的),考虑到这一点,为了减少内存、容量和硬件消耗,同时又不牺牲模型预测的精度,在设备上部署轻量级模型,并通过私有的设备
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- 优化深度学习模型:PyTorch中的模型剪枝技术详解
代码之光_1980
深度学习pytorch剪枝
标题:优化深度学习模型:PyTorch中的模型剪枝技术详解在深度学习领域,模型剪枝是一种提高模型效率和性能的技术。通过剪枝,我们可以去除模型中的冗余权重,从而减少模型的复杂度和提高运算速度,同时保持或甚至提升模型的准确率。本文将详细介绍如何在PyTorch框架中实现模型剪枝,并提供相应的代码示例。1.模型剪枝的基本概念模型剪枝主要分为两种类型:结构化剪枝和非结构化剪枝。结构化剪枝通常指的是剪除整个
- 模型保存与加载:PyTorch中的实践指南
冰蓝蓝
自然语言处理pytorch人工智能python
在深度学习项目中,模型的保存和加载是一个至关重要的步骤。它不仅有助于在训练过程中保存进度,还可以在训练完成后部署模型。PyTorch提供了灵活的方式来保存和加载模型,本文将详细介绍这些方法。模型保存在PyTorch中,有两种主要的模型保存方法:保存整个模型和仅保存模型参数。保存整个模型保存整个模型意味着保存模型的结构和参数。这种方法简单直接,但文件体积较大,且依赖于模型的具体实现。importto
- torch.unsqueeze:灵活调整张量维度的利器
冰蓝蓝
transformertransformer深度学习
在深度学习框架PyTorch中,张量(Tensor)是最基本的数据结构,它类似于NumPy中的数组,但可以在GPU上运行。在日常的深度学习编程中,我们经常需要调整张量的维度以适应不同的操作和层。torch.unsqueeze函数就是PyTorch提供的一个非常有用的工具,用于在指定位置增加张量的维度。本文将详细介绍torch.unsqueeze的用法和一些实际应用场景。什么是torch.unsqu
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">