OpenMMLab实战营Day1

OpenMMLab介绍

OpenMMLab实战营Day1_第1张图片

OpenMMLab 浦视 | 是上海人工智能实验室的计算机视觉算法开源体系 OpenMMLab是深度学习时代全球领域最全面、最具影响力的视觉算法开源项目,全球最大最全的开源计算机视觉算法库,为学术和产业界提供一个可跨方向、结构精良、易复现的统一算法工具库。

OpenMMLab实战营Day1_第2张图片

OpenMMLab 已经累计开源了超过 30 个算法库,涵盖分类、检测、分割、视频理解等众多研究领域,拥有超过 300 种算法、2,400 多个预训练模型。在 GitHub 上获得超过 72,000 个标星,同时吸引了超过 1,500 名社区开发者参与项目贡献,用户遍及超过 110 个国家和地区,覆盖全国全球顶尖高校、研究机构和企业。

OpenMMLab实战营Day1_第3张图片

机器学习、深度学习和神经网络

机器学习:

实现人工智能的方法统称为机器学习,简单来说就是从历史数据中学习规律,然后训练出模型,使用模型预测未来的一种方法。机器学习与其他领域的处理技术结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。

深度学习:

深度学习属于机器学习中的一类方法。解决了很多传统机器学习算法效果不佳的智能问题。

神经网络:

"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应" [Kohonen, 1988] .

神经网络基本原理介绍可参考这篇文章:

神经网络——最易懂最清晰的一篇文章_illikang的博客-CSDN博客_神经网络

训练数据:传统神经网络算法必须使用有label的数据,但深度学习不需要;

训练方式:传统神经网络使用反向传播算法,深度学习使用自下而上非监督学习,再结合自顶向下的监督学习的方式;

层数:传统神经网络算法只有2-3层,再多层训练效果也不会有较大提升,训练时间更长。深度学习可以有非常多层的隐含层,并且效果很好。

你可能感兴趣的:(OpenMMLab,计算机视觉,算法,人工智能)