- 关于自然语言处理(三)深度学习中的文字序列数据的分词操作
MatrixSparse
大模型人工智能自然语言处理深度学习人工智能
深度学习中的文字序列数据二维文字序列在文字数据中,样本与样本之间的联系是语义的联系,语义的联系即是词与词之间、字与字之间的联系,因此在文字序列中每个样本是一个单词或一个字(对英文来说大部分时候是一个单词,偶尔也可以是更小的语言单位,如字母或半词),故而在中文文字数据中,一张二维表往往是一个句子或一段话,而单个样本则表示单词或字。此时,不能够打乱顺序的维度是vocab_size,它代表了一个句子/一
- 【开源项目】2024最新PHP在线客服系统源码/带预知消息/带搭建教程
于飞SEO
免费资源分享开源php开发语言
简介随着人工智能技术的飞速发展,AI驱动的在线客服系统已经成为企业提升客户服务质量和效率的重要工具。本文将探讨AI在线客服系统的理论基础,并展示如何使用PHP语言实现一个简单的AI客服系统。源码仓库地址:ym.fzapp.top在线客服系统的理论基础AI在线客服系统通过自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术,能够理解和响应客户的查询。这些系统通常包括以下几个关键组件:自然语
- 基于CNN-BIGRU-Attention模型的功率预测(模型详解及代码复现)
清风AI
深度学习算法详解及代码复现深度学习人工智能算法机器学习计算机视觉cnn神经网络
整体架构基于CNN-BiGRU-Attention模型的功率预测模型是一种融合了卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的深度学习架构。这种混合模型旨在充分利用CNN的局部特征提取能力、BiGRU的长序列处理能力以及Attention机制的关键特征突出能力,从而提高功率预测的准确性和可靠性。模型的整体架构主要包括以下几个关键组件:输入层:设计的输入特
- 文生图 图生视频 文生视频人工智能AI工具节选
行思理
AI人工智能文生图文生视频图生视频数字人
1、MidjourneyAI图像和插画生成工具,官网地址:Midjourney中文站,MJ中文站-专业AI绘图网站2、StableDiffusion一种基于扩散技术的深度学习文本转图像模型,演示地址:StabilityAI3、通义万相阿里云通义大模型旗下的AI创意作画与视频生成平台,官网地址:通义万相_AI创意作画_AI绘画_人工智能-阿里云4、PhotoStudioAI模特AI商品图及视频一键生
- ChatGPT-4o引领医学革命:临床科研创新与效率的新纪元
小艳加油
教程语言类人工智能数据分析ChatGPT-4o临床医学
2024年5月12日,更强版本的ChatGPT-4o上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。因此,帮助广大临床医学相关的医院管理人员、医生、学生、科研人员更加熟练地掌握ChatGPT-4o在临床医学日常生活、工作与学习、课题申报、论文选题、实验方案设计、实验数据统计分析与可视化等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理
- Manus:通用型Agent的技术革新与多元应用场景
蚂蚁质量
其他python深度学习
一、Manus前沿洞察Manus,作为Monica团队匠心打造的全球首款通用型Agent产品,名称源于拉丁文“mensetmanus”,意即“手”,深刻寓意着知识与行动的深度融合。其核心理念独树一帜,旨在为大语言模型(LLM)赋予“手”的能力,使其借助工具调用与任务执行,将抽象知识转化为切实可行的实际操作,开启人工智能应用的崭新时代。二、精巧技术架构Manus的技术架构兼具高度灵活性与卓越扩展性,
- AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美关键词:AI生成内容(AIGC),ChatGPT,Midjourney,中国古风,创意设计,艺术表达1.背景介绍1.1问题由来人工智能生成内容(ArtificialIntelligenceGeneratedContent,AIGC)作为AI技术的重要分支,近年来在视觉、音乐、文本等多个领域取得了显著进展,引领了内容创作
- 人工智能引领技术革命:ChatGPT与深度学习的突破性进展
撒旦骑路西法,大战吕布
国内外安全资讯人工智能
在全球科技快速发展的今天,人工智能(AI)正以前所未有的速度渗透到各个行业,成为推动社会变革的重要力量。特别是在自然语言处理(NLP)领域,OpenAI的ChatGPT凭借深度学习技术的持续突破,展现了AI在理解、推理、对话生成等方面的惊人进步。本文将深入探讨ChatGPT及深度学习的最新突破,以及它对不同行业的深远影响。1.ChatGPT:AI语言模型的革新者1.1什么是ChatGPT?Chat
- 《即梦牵手DeepSeek,AI创作领域的变革与未来》
空云风语
人工智能人工智能
《即梦牵手DeepSeek,AI创作领域的变革与未来》开篇:科技融合,梦想启航在当今科技飞速发展的时代,人工智能(AI)无疑是最为耀眼的领域之一。新的技术和创新不断涌现,推动着AI行业的边界持续拓展。近期,AI领域又迎来了一个令人瞩目的大事件:即梦正式接入DeepSeek,这一强强联合的举措,犹如一颗投入湖面的巨石,激起千层浪,在整个AI行业引发了广泛关注和热烈讨论。即梦,作为字节跳动旗下极具创新
- 大模型与Java的深度融合:现状、实践、挑战与未来
软件职业规划
java开发语言
一、引言:大模型与Java的交汇近年来,大模型技术在人工智能领域迅速崛起,成为推动智能应用发展的核心力量。与此同时,Java作为一种历史悠久且广泛应用于企业级开发的编程语言,凭借其强大的生态系统、跨平台特性和稳定性,一直是软件开发领域的中流砥柱。随着大模型技术的普及,Java与大模型的结合成为了一个备受关注的热点话题。这种结合不仅为Java开发者带来了新的机遇,也为大模型的落地应用提供了更广阔的场
- 深入探索Deeplearning4j(DL4J):Java深度学习的全面指南
软件职业规划
java深度学习开发语言
一、DL4J框架概述Deeplearning4j(DL4J)是一个开源的深度学习框架,专为Java和Scala设计,运行在Java虚拟机(JVM)上。它由Skymind公司开发并维护,旨在将深度学习技术应用于大规模商业应用。DL4J支持多种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。自2014年首次发布以来,DL4J已经成为Java深度学习领域的
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 李沐深度学习预备知识——数据操作
flex_university
李沐课程学习笔记深度学习人工智能
预备知识——数据操作1、数据操作1.1基本操作importtorchx=torch.arange(12)print(x)print(x.shape)print(x.numel())x=x.reshape(3,4)#变形x=x.reshape(2,-1)#-1代表自动计算torch.zeros((2,3,4))#生成全0张量torch.ones((2,3,4))#生成全1张量torch.randn(
- 基于Pytorch的语音情感识别系统
鱼弦
人工智能时代pytorch人工智能python
基于Pytorch的语音情感识别系统介绍语音情感识别(SpeechEmotionRecognition,SER)是指通过分析和处理人的语音信号来识别其情感状态。常见的情感状态包括愤怒、喜悦、悲伤、惊讶等。基于Pytorch的语音情感识别系统使用深度学习技术,通过训练神经网络模型来实现情感识别任务。应用使用场景客户服务中心:自动识别客户情绪,提供有针对性的服务。智能语音助手:提升人机交互体验,更加智
- Python简介
Gao_xu_sheng
python开发语言
Python前言Python一直是一门优秀的编程语言,不仅简洁、易用,而且功能强大,它能做到的事情太多了,既可用于开发桌面应用,也可用于做网络编程,网络爬虫,还有很重要的领域就是AI大模型开发。近年来,随着人工智能(AI)和机器学习(ML)领域的迅猛发展,Python在这些前沿技术中扮演了至关重要的角色,特别是在构建和训练大规模机器学习方面。Python拥有丰富的库和框架,这些工具极大地促进了AI
- 深度解析DeepSeek:从技术架构到实战应用
YY...yy
aiDeepSeek
一、引言:为什么选择DeepSeek?在2025年人工智能领域竞争白热化的今天,DeepSeek以其超低训练成本(仅为GPT-4o的1/20)和业界领先的推理能力,成为全球开发者关注的焦点。据权威数据显示,DeepSeek-V3在多语言编程和数学推理任务中的表现已超越Llama-3.1等主流模型4,而其最新发布的DeepSeek-R1更是在苹果应用商店美区免费榜冲至第六名6。二、技术架构解析2.1
- vscode 都有哪些大模型编程插件
魔王阿卡纳兹
IT杂谈开源项目观察vscodeide编辑器
VSCode中有许多基于大模型的编程插件,这些插件通过集成人工智能技术,显著提升了开发者的编程效率和体验。以下是一些主要的大模型编程插件及其功能:GitHubCopilotGitHubCopilot是由OpenAI开发的插件,能够根据代码上下文自动生成代码建议,支持多种编程语言。它与VSCode的集成使得开发者可以在熟悉的开发环境中直接利用AI功能,提高代码生成和调试的效率。DevChatDevC
- DeepSeek大模型技术解析:从架构到应用的全面探索
小涂Ss
架构人工智能语言模型AI大模型DeepSeekagiai
一、引言在人工智能领域,大模型的发展日新月异,其中DeepSeek大模型凭借其卓越的性能和广泛的应用场景,迅速成为业界的焦点。本文旨在深入剖析DeepSeek大模型的技术细节,从架构到应用进行全面探索,以期为读者提供一个全面而深入的理解。官网:https://www.deepseek.com/1、DeepSeek大模型简介DeepSeek大模型是由北京深度求索人工智能基础技术研究有限公司开发的一款
- Manus全球首个通用Agent,Manus AI:Agent应用的ChatGPT时刻
ππ记录
人工智能chatgptManus详细介绍Manus介绍Manus详细应用Manus教程Manus详情介绍
文章目录前言ManusAI:全球首个通用AgentManusAI:技术架构与创始人经历AIAgent的实现框架与启示AIAgent的发展预测行业风险提示前言这是一篇关于ManusAI及其在通用人工智能领域的应用和前景的报告,主要介绍了ManusAI的产品定位、功能、技术架构、创始人经历以及AIAgent的发展预测和实现框架。以下是对这些核心内容的简要概述:Manus全网最全资料(持续更新)链接:h
- PyTorch系列教程:编写高效模型训练流程
梦想画家
人工智能#pythonpytorch人工智能python
当使用PyTorch开发机器学习模型时,建立一个有效的训练循环是至关重要的。这个过程包括组织和执行对数据、参数和计算资源的操作序列。让我们深入了解关键组件,并演示如何构建一个精细的训练循环流程,有效地处理数据处理,向前和向后传递以及参数更新。模型训练流程PyTorch训练循环流程通常包括:加载数据批量处理执行正向传播计算损失反向传播更新权重一个典型的训练流程将这些步骤合并到一个迭代过程中,在数据集
- 新一代 AI 软件Manus 将重新将AI市场大洗牌
CircuitWizard
人工智能
Manus是一家专注于手部追踪、虚拟现实(VR)和增强现实(AR)技术的公司,其新一代AI软件结合了先进的机器学习和计算机视觉技术,致力于提升人机交互的自然性和效率。以下是关于Manus新一代AI软件的详细介绍及其核心功能:1.核心技术与创新Manus的AI软件基于以下技术突破:高精度手部追踪:通过深度学习算法和摄像头/传感器数据,实时捕捉手部骨骼、关节和肌肉的细微动作,精度可达亚毫米级,支持复杂
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- 眼见不一定为实,孙悟空教你AI换脸换声的技术原理及如何用火眼金睛识别新型诈骗
非知名人士
人工智能
话说俺老孙自从大闹天宫归来,闲来无事,忽闻人间兴起一门奇术——所谓“换脸换声”。听说那乃现代科学家利用人工智能之奥秘,将人脸、声音通通变换得跟戏法似的,让人真假难辨。俺老孙心生好奇,便跃上筋斗云,直奔这科技之都,打算探个究竟。今就由俺老孙来给你们摆一摆,这换脸换声究竟是咋回事,就像俺大闹天宫时施展变化,变化无穷,妙趣横生!话说那日俺老孙正在花果山上闲逛,忽然听见猪八戒捧着一部闪闪发光的“小机灵”—
- 【深度学习】PyTorch v2.6 Overview
OpenSeek
人工智能#机器学习#深度学习pythonpytorch人工智能
PyTorchv2.6OverviewPythonAPILibrariesPyTorch是一个优化的张量库,用于使用GPU和CPU进行深度学习。PythonAPI序号API名称解释1torchPyTorch核心库(中文:火炬)PyTorch的核心库,提供了张量操作、自动求导等基础功能。2torch.nn神经网络模块包含构建神经网络所需的各种模块,如层、损失函数等。3torch.nn.functio
- PyTorch 显存分配不均匀
LutingWang
debugpytorch人工智能python
在使用PyTorch进行深度学习训练时,可能会遇到GPU0的显存占用明显高于其他GPU的情况。这可能导致显存不足,影响训练效率。排查思路:开启两个Shell,ShellA用于运行训练脚本,ShellB用于实时监控显存。在ShellA运行训练脚本。在另一个shell中运行nvidia-smi-l1。这个命令会每秒刷新一次nvidia-smi的结果,方便实时观察各GPU显存的变化情况。观察GPU0何时
- PyTorch 训练循环全攻略:从零到精通的深度学习秘籍
吴师兄大模型
PyTorch深度学习pytorch人工智能训练循环LLM大模型python
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- python搭建NPL模型的详细步骤和代码
百锦再@新空间代码工作室
包罗万象python开发语言djangoflaskpygamepip
目录**一、环境准备****二、数据准备****三、文本预处理****1.清理文本****四、特征工程****1.TF-IDF****2.Word2Vec****五、搭建NLP模型****1.逻辑回归****2.LSTM深度学习模型****六、使用预训练的BERT模型****七、模型评估****八、部署模型****总结**1.**人机交互的核心技术**2.**推动AI技术发展的动力**3.**广泛
- DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能python
DeepSeekR1-32B微调实战指南├──1.环境准备│├──1.1硬件配置││├─全参数微调:4*A10080GB││└─LoRA微调:单卡24GB│├──1.2软件依赖││├─PyTorch2.1.2+CUDA││└─Unsloth/ColossalAI│└──1.3模型加载│├─4bit量化加载│└─FlashAttention2加速├──2.数据集构建│├──2.1数据源││├─CMD
- golang深度学习-性能分析
老狼伙计
golang编程语言云原生学习笔记golang深度学习开发语言
性能分析Go语言原生支持在运行时保留重要的特征指标和状态,有许多工具可以分析甚至可视化程序运行的状态和过程。pprof工具:常用于分析资源的使用情况,可以采集程序运行时的多种不同类型的数据(例如CPU占用、内存消耗和协程数量等),并对数据进行分析聚合生成的报告。trace工具:则关注程序运行时的事件(例如协程状态切换,GC的开始和结束、系统调用等等),常用于分析延迟、阻塞和调度等问题。pprof工
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo