多条件组合查询
bool
es
中使用bool
来控制多条件
查询,bool
查询支持以下参数:
must
:被查询的数据必须满足
当前条件mush_not
:被查询的数据必须不满足
当前条件should
:被查询的数据应该满足
当前条件。should
查询被用于修正查询结果的评分。需要注意的是,如果组合查询中没有must
,那么被查询的数据至少要匹配一条should
。如果有must
语句,那么就无须匹配should
,should
将完全用于修正查询结果的评分filter
:被查询的数据必须满足
当前条件,但是filter
操作不涉及查询结果评分。仅用于条件过滤
下面通过一个例子来看下如何使用:
GET class_1/_search { "query": { "bool": { "must": [ {"match": { "name": "apple" }} ], "must_not": [ {"term": { "num": { "value": "5" } }} ], "should": [ {"match": { "name": "k" }} ],"filter": [ {"range": { "num": { "gte": 0, "lte": 10 } }} ] } } }
结果返回:
{ "took" : 9, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 0.752627, "hits" : [ { "_index" : "class_1", "_type" : "_doc", "_id" : "b8fcCoYB090miyjed7YE", "_score" : 0.752627, "_source" : { "name" : "I eat apple so haochi1~", "num" : 1 } }, { "_index" : "class_1", "_type" : "_doc", "_id" : "ccfcCoYB090miyjed7YE", "_score" : 0.752627, "_source" : { "name" : "I eat apple so haochi3~", "num" : 1 } }, { "_index" : "class_1", "_type" : "_doc", "_id" : "cMfcCoYB090miyjed7YE", "_score" : 0.7389809, "_source" : { "name" : "I eat apple so zhen haochi2~", "num" : 1 } } ] } }
constant_score
constant_score
查询可以通过boost
指定一个固定的评分,通常来说,constant_score
的作用是代替一个只有filter
的bool
查询
下面看具体使用:
GET class_1/_search { "query": { "constant_score": { "filter": { "term": { "num": 6 } }, "boost": 1.2 } } }
返回:
{ "took" : 7, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.2, "hits" : [ { "_index" : "class_1", "_type" : "_doc", "_id" : "h2Fg-4UBECmbBdQA6VLg", "_score" : 1.2, "_source" : { "name" : "b", "num" : 6 } }, { "_index" : "class_1", "_type" : "_doc", "_id" : "1", "_score" : 1.2, "_source" : { "name" : "l", "num" : 6 } } ] } }
查询验证 & 分析
验证
es
中通过/_validate/query
路由来验证查询条件的正确性, 这里要注意是验证查询条件是否准确
示例:
GET class_1/_validate/query?explain { "query": { "bool": { "must": [ {"match": { "name": "apple" }} ] } } }
正常返回:
{ "_shards" : { "total" : 1, "successful" : 1, "failed" : 0 }, "valid" : true, "explanations" : [ { "index" : "class_1", "valid" : true, "explanation" : "+name:apple" } ] }
将name
字段改为 name1
再查询:
{ "_shards" : { "total" : 1, "successful" : 1, "failed" : 0 }, "valid" : true, "explanations" : [ { "index" : "class_1", "valid" : true, "explanation" : """+MatchNoDocsQuery("unmapped fields [name1]")""" } ] }
可以看到报了异常错误
分析
es
中通过/_validate/query?explain
路由来进行查询分析
示例:
GET class_1/_validate/query?explain { "query": { "bool": { "must": [ {"match": { "name": "apple so" }} ] } } }
返回:
{ "_shards" : { "total" : 1, "successful" : 1, "failed" : 0 }, "valid" : true, "explanations" : [ { "index" : "class_1", "valid" : true, "explanation" : "+(name:apple name:so)" } ] }
可以看到"explanation" : "+(name:apple name:so)"
,查询的短语apple so
被进行了分词,分成了name:apple
, name: so
排序
默认排序
在前面的几个例子中,我们可以看到它的默认排序是按照_score降序,也就是匹配度高的比较靠前,但是_socre
的计算是很占用查询性能的,这个不难理解。
当我们不需要进行_score计算,可以通过filter
或constant_score
来进行构建查询条件
filter
示例:
GET class_1/_search { "query": { "bool": { "filter": [ {"term": { "num": 1 }} ] } } }
返回:
{ "took" : 5, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 0.0, "hits" : [ { "_index" : "class_1", "_type" : "_doc", "_id" : "b8fcCoYB090miyjed7YE", "_score" : 0.0, "_source" : { "name" : "I eat apple so haochi1~", "num" : 1 } }, { "_index" : "class_1", "_type" : "_doc", "_id" : "ccfcCoYB090miyjed7YE", "_score" : 0.0, "_source" : { "name" : "I eat apple so haochi3~", "num" : 1 } }, { "_index" : "class_1", "_type" : "_doc", "_id" : "cMfcCoYB090miyjed7YE", "_score" : 0.0, "_source" : { "name" : "I eat apple so zhen haochi2~", "num" : 1 } } ] } }
通过查询结果我们发现score
都为0.0
了,说明没有进行score
计算
constant_score
示例:
GET class_1/_search { "query": { "constant_score": { "filter": { "term": { "num": 1 } }, "boost": 1.2 } } }
返回:
{ "took" : 3, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 1.2, "hits" : [ { "_index" : "class_1", "_type" : "_doc", "_id" : "b8fcCoYB090miyjed7YE", "_score" : 1.2, "_source" : { "name" : "I eat apple so haochi1~", "num" : 1 } }, { "_index" : "class_1", "_type" : "_doc", "_id" : "ccfcCoYB090miyjed7YE", "_score" : 1.2, "_source" : { "name" : "I eat apple so haochi3~", "num" : 1 } }, { "_index" : "class_1", "_type" : "_doc", "_id" : "cMfcCoYB090miyjed7YE", "_score" : 1.2, "_source" : { "name" : "I eat apple so zhen haochi2~", "num" : 1 } } ] } }
可以看到,对应返回的分值,都是使用boost
属性指定的分值
自定义排序
自定义可以用于大部分场景,那么es
中怎么进行自定义排序呢? es
中使用sort
参数来自定义排序顺序,默认为升序,那么降序怎么操作呢?
- 升序
{"sort":["num"]}
- 降序,
desc
代表降序
{"sort":[{"num":{"order":"desc"}}]}
tips
es
中使用doc value
列式存储来实现字段的排序功能text
字段默认不创建doc value
,因此无法针对text
字段进行排序- 可以通过设置
text
字段属性fielddata=true
来开启对text
字段的排序功能,但是不建议开启,对text
字段排序及其消耗查询性能且不符合需求
单字段排序
GET class_1/_search { "sort": [ "num" ] }
返回:
{ "took" : 6, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 11, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "class_1", "_type" : "_doc", "_id" : "b8fcCoYB090miyjed7YE", "_score" : null, "_source" : { "name" : "I eat apple so haochi1~", "num" : 1 }, "sort" : [ 1 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "ccfcCoYB090miyjed7YE", "_score" : null, "_source" : { "name" : "I eat apple so haochi3~", "num" : 1 }, "sort" : [ 1 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "cMfcCoYB090miyjed7YE", "_score" : null, "_source" : { "name" : "I eat apple so zhen haochi2~", "num" : 1 }, "sort" : [ 1 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "h2Fg-4UBECmbBdQA6VLg", "_score" : null, "_source" : { "name" : "b", "num" : 6 }, "sort" : [ 6 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "1", "_score" : null, "_source" : { "name" : "l", "num" : 6 }, "sort" : [ 6 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "3", "_score" : null, "_source" : { "num" : 9, "name" : "e", "age" : 9, "desc" : [ "hhhh" ] }, "sort" : [ 9 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "4", "_score" : null, "_source" : { "name" : "f", "age" : 10, "num" : 10 }, "sort" : [ 10 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "RWlfBIUBDuA8yW5cu9wu", "_score" : null, "_source" : { "name" : "一年级", "num" : 20 }, "sort" : [ 20 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "iGFt-4UBECmbBdQAnVJe", "_score" : null, "_source" : { "name" : "g", "age" : 8 }, "sort" : [ 9223372036854775807 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "iWFt-4UBECmbBdQAnVJg", "_score" : null, "_source" : { "name" : "h", "age" : 9 }, "sort" : [ 9223372036854775807 ] } ] } }
可以看到是按照num
默认升序排序
再看下降序:
GET class_1/_search { "sort": [ {"num": {"order":"desc"}} ] }
返回:
{ "took" : 15, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 11, "relation" : "eq" }, "max_score" : null, "hits" : [ { "_index" : "class_1", "_type" : "_doc", "_id" : "RWlfBIUBDuA8yW5cu9wu", "_score" : null, "_source" : { "name" : "一年级", "num" : 20 }, "sort" : [ 20 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "4", "_score" : null, "_source" : { "name" : "f", "age" : 10, "num" : 10 }, "sort" : [ 10 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "3", "_score" : null, "_source" : { "num" : 9, "name" : "e", "age" : 9, "desc" : [ "hhhh" ] }, "sort" : [ 9 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "h2Fg-4UBECmbBdQA6VLg", "_score" : null, "_source" : { "name" : "b", "num" : 6 }, "sort" : [ 6 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "1", "_score" : null, "_source" : { "name" : "l", "num" : 6 }, "sort" : [ 6 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "b8fcCoYB090miyjed7YE", "_score" : null, "_source" : { "name" : "I eat apple so haochi1~", "num" : 1 }, "sort" : [ 1 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "ccfcCoYB090miyjed7YE", "_score" : null, "_source" : { "name" : "I eat apple so haochi3~", "num" : 1 }, "sort" : [ 1 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "cMfcCoYB090miyjed7YE", "_score" : null, "_source" : { "name" : "I eat apple so zhen haochi2~", "num" : 1 }, "sort" : [ 1 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "iGFt-4UBECmbBdQAnVJe", "_score" : null, "_source" : { "name" : "g", "age" : 8 }, "sort" : [ -9223372036854775808 ] }, { "_index" : "class_1", "_type" : "_doc", "_id" : "iWFt-4UBECmbBdQAnVJg", "_score" : null, "_source" : { "name" : "h", "age" : 9 }, "sort" : [ -9223372036854775808 ] } ] } }
这下就降序
排序了
多字段
GET class_1/_search { "sort": [ "num", "age" ] }
scroll分页
还记得之前给大家讲的from+size
的分页方式吗,es
中默认允许from+size
的分页的最大数据量为10000
。当我们想要批量获取更大的数据量时,使用from+size
就会十分的耗费性能。
然而大部分应用场景下的数据量是极其庞大的,比如你要查询某些系统日志数据。es
中可以使用/scorll
路由来进行滚动分页查询
,它类似于在查询初始时间点创建了一个当前服务集群的数据快照
(包含每一个分片),并保留它一段时间。在时间超过了设置的过期时间以后,快照将在es空闲时被删除。
需要注意的是,因为是进行快照
查询,因此在快照
创建后数据的变更在本次的滚动查询中,不可见
初始化快照 & 快照保存10分钟
查询示例:
GET class_1/_search?scroll=10m { "query": { "match_phrase": { "name": "apple" } }, "size": 2 }
返回:
{ "_scroll_id" : "DnF1ZXJ5VGhlbkZldGNoAwAAAAAAAAXoFjEwWkdOMkxLUTVPZEMzM01ZdHhPc1EAAAAAAAACABZjUy1CemQwQVFfU3BUeGs2OGk0R1Z3AAAAAAAAAgEWY1MtQnpkMEFRX1NwVHhrNjhpNEdWdw==", "took" : 6, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 0.752627, "hits" : [ { "_index" : "class_1", "_type" : "_doc", "_id" : "b8fcCoYB090miyjed7YE", "_score" : 0.752627, "_source" : { "name" : "I eat apple so haochi1~", "num" : 1 } }, { "_index" : "class_1", "_type" : "_doc", "_id" : "ccfcCoYB090miyjed7YE", "_score" : 0.752627, "_source" : { "name" : "I eat apple so haochi3~", "num" : 1 } } ] } }
如图,当前共返回2
条数据,并且返回了一个快照ID,后续可以根据快照ID进行滚动查询:
根据快照ID滚动查询
GET /_search/scroll { "scroll": "10m", "scroll_id" : "DnF1ZXJ5VGhlbkZldGNoAwAAAAAAAAXoFjEwWkdOMkxLUTVPZEMzM01ZdHhPc1EAAAAAAAACABZjUy1CemQwQVFfU3BUeGs2OGk0R1Z3AAAAAAAAAgEWY1MtQnpkMEFRX1NwVHhrNjhpNEdWdw==" }
返回:
{ "_scroll_id" : "DnF1ZXJ5VGhlbkZldGNoAwAAAAAAAAXoFjEwWkdOMkxLUTVPZEMzM01ZdHhPc1EAAAAAAAACABZjUy1CemQwQVFfU3BUeGs2OGk0R1Z3AAAAAAAAAgEWY1MtQnpkMEFRX1NwVHhrNjhpNEdWdw==", "took" : 6, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 0.752627, "hits" : [ { "_index" : "class_1", "_type" : "_doc", "_id" : "cMfcCoYB090miyjed7YE", "_score" : 0.7389809, "_source" : { "name" : "I eat apple so zhen haochi2~", "num" : 1 } } ] } }
在滚动一次:
{ "_scroll_id" : "DnF1ZXJ5VGhlbkZldGNoAwAAAAAAAAXoFjEwWkdOMkxLUTVPZEMzM01ZdHhPc1EAAAAAAAACABZjUy1CemQwQVFfU3BUeGs2OGk0R1Z3AAAAAAAAAgEWY1MtQnpkMEFRX1NwVHhrNjhpNEdWdw==", "took" : 1, "timed_out" : false, "_shards" : { "total" : 3, "successful" : 3, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : 0.752627, "hits" : [ ] } }
有的小伙伴可能不知道怎么滚动
的,因为后续滚动都是同一个scroll_id
,其实通过结果,我们不难发现:
- 首先创建了一个10分钟的
快照
,规定了每次返回的数据量为2条
,并且初始化的时候,返回了2条 - 通过
scroll_id
进行滚动操作,返回了1条
数据,原因是快照的数据量总共只有3条
,初始化的时候返回了2条
,所以现在只有1条
- 再次滚动的时候,发现返回了空,因为数据已经被查完了
以上就是ElasticSearch 多条件组合查询验证及示例分析的详细内容,更多关于ElasticSearch 多条件组合查询的资料请关注脚本之家其它相关文章!