- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- Python 深度学习实战:生成对抗网络
AI天才研究院
深度学习实战AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来较火热的深度学习模型之一,其在图像合成、视频生成、文本数据生成等领域均取得了不俗的效果。与传统的机器学习模型不同,GAN可以生成真实有效的数据,无需人工标注数据。它由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器通过学习,根据噪声或随机变量(latentvar
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- [Python从零到壹] 七十七.图像识别及经典案例篇之目标检测入门普及和ImageAI对象检测详解
Eastmount
Python从零到壹python目标检测ImageAI图像是被基础系列
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智
- kaggle上面有哪些适合机器学习新手的比赛和项目
xiamu_CDA
机器学习人工智能
Kaggle上面有哪些适合机器学习新手的比赛和项目?在当今数据驱动的时代,机器学习已经成为一门炙手可热的技能。Kaggle作为全球最大的数据科学竞赛平台,不仅汇聚了众多顶尖的数据科学家和机器学习工程师,也为初学者提供了丰富的学习资源和实战机会。对于机器学习新手来说,选择合适的比赛和项目是至关重要的第一步。本文将为你推荐一些适合新手的Kaggle比赛和项目,并提供一些实用的建议,帮助你在机器学习的道
- python鸢尾花数据集knn_【python+机器学习1】python 实现 KNN
weixin_39629269
python鸢尾花数据集knn
欢迎关注哈希大数据微信公众号【哈希大数据】1KNN算法基本介绍K-NearestNeighbor(k最邻近分类算法),简称KNN,是最简单的一种有监督的机器学习算法。也是一种懒惰学习算法,即开始训练仅仅是保存所有样本集的信息,直到测试样本到达才开始进行分类决策。KNN算法的核心思想:要想确定测试样本属于哪一类,就先寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后判断这K个样本中大部分所
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- Julia语言的计算机基础
Code侠客行
包罗万象golang开发语言后端
Julia语言的计算机基础引言随着数据科学、机器学习和高性能计算的快速发展,对编程语言的需求也日益增加。在众多编程语言中,Julia语言因其独特的设计理念和高性能而迅速崛起。本文将详细探讨Julia语言的基础知识,包括其历史背景、安装与环境配置、基本语法、数据结构、函数与模块、以及性能优化等方面,旨在为对Julia感兴趣的读者提供一份全面的入门指南。一、Julia语言简介1.1历史背景Julia是
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 梯度提升决策树树(GBDT)公式推导
化作星辰
决策树算法机器学习
###逻辑回归的损失函数逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为:\[P(y=1|x)=\frac{1}{1+e^{-F(x)}}\]其中\(F(x)\)是一个线性组合函数,通常表示为:\[F(x)=\sum_{m=0}^{M}h_m(x)\]这里的\(h_m(x)\)是学习到的决策树。###损失函数的推导对于单个样本\((x_i,y_i)\),逻
- 机器学习问题:AttributeError: ‘NoneType‘ object has no attribute ‘split‘ 解决办法
零零鲎
机器学习人工智能
参考博客:本次博客参考http://t.csdnimg.cn/8E7eH。写下来主要是为了整理自己在学习过程中遇到的问题并把解决办法列出来。学习内容:如果运行出现:AttributeError:‘NoneType’objecthasnoattribute'split’这样的问题。网上有很多解决办法是降级numpy到1.21.4。然后上面博客给出的解决方案是升级threadpoolctl。可以使用命
- AI Agent:一场智能革命的开始
机器人openai区块链
在当今科技日新月异的时代,AI(人工智能)技术正以前所未有的速度改变着我们的生活和工作方式。其中,AIAgent作为AI领域的一个新兴分支,正逐渐展现出其巨大的潜力和价值。本文将深入探讨AIAgent的发展现状、核心优势以及未来的发展方向,带您领略这一前沿技术的无限魅力。一、AIAgent的发展现状:技术突破与广泛应用近年来,随着大数据、云计算和机器学习等技术的飞速发展,AIAgent的技术水平得
- 【杂谈】-为什么Python是AI的首选语言
视觉与物联智能
杂谈python人工智能开发语言深度学习机器学习
为什么Python是AI的首选语言文章目录为什么Python是AI的首选语言1、为何Python引领人工智能发展1.1可用性和生态系统1.2用户群和用例1.3效率辅助2、AI项目对Python开发人员的要求3、如何开启你的AI学习之旅人工智能的广泛应用正在软件工程领域引发范式转变。Python凭借其易用性、成熟的生态系统以及满足人工智能和机器学习(ML)工作流数据驱动需求的能力,迅速成为人工智能开
- 新质生产力与核心竞争力提升
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
新质生产力、人工智能、机器学习、深度学习、算法优化、数据驱动、核心竞争力、数字化转型1.背景介绍在当今数字化时代,科技创新正以惊人的速度推动着社会发展。人工智能(AI)作为科技发展的重要驱动力,正在深刻地改变着生产方式和生活方式。从自动驾驶汽车到智能语音助手,从个性化推荐系统到医疗诊断辅助,AI技术的应用场景日益广泛,为人类社会带来了前所未有的机遇。然而,AI技术的应用并非一帆风顺。如何有效地利用
- 智能工单分配在技术支持中的应用
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
智能工单分配,技术支持,机器学习,算法优化,效率提升,客户满意度1.背景介绍在当今数字化时代,技术支持部门扮演着至关重要的角色,为用户提供及时有效的技术帮助,确保业务的正常运行。然而,随着用户数量和技术需求的不断增长,传统的人工工单分配方式面临着诸多挑战:分配效率低下:人工分配工单需要耗费大量时间和人力,且难以做到精准匹配,导致工单处理效率低下。资源分配不均衡:经验丰富的技术人员可能承担过多的工作
- 计算广告(一)
爱学习的菜鸟罢了
搜广推人工智能
计算广告学是一个十分庞大的学科,里面涵盖了自然语言处理、机器学习、推荐系统等众多研究方向。而且广告作为互联网行业的三大盈利模式(广告、电商、游戏)之一,也是这三大模式中最有技术含量的,计算广告学一直都吸引着无数学术界/工业界的精英投入其中(ps:计算广告学也是机器学习在商业界最成功的应用之一)。行业分类例子盈利搜索引擎Google百度广告社交网络腾讯facebook广告增值服务游戏电商网站亚马逊阿
- 如何从Oracle Autonomous Database加载文档
fGVBSAbe
数据库oraclepython
OracleAutonomousDatabase是一种云数据库,利用机器学习来自动化数据库调优、安全性、备份、更新以及其他传统由数据库管理员(DBAs)执行的例行管理任务。在本文中,我们将演示如何从OracleAutonomousDatabase加载文档。我们将使用连接字符串或TNS配置来进行连接。技术背景介绍OracleAutonomousDatabase通过自动化的方式极大地简化了数据库管理的
- 基于数据可视化+SpringBoot+Vue的医院综合管理平台设计和实现(源码+论文+部署讲解等)
java李杨勇
Java精品毕设实战案例Java毕业设计实战案例信息可视化springbootvue.js医院综合管理平台Java毕业设计
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- 自动检测和机器审核系统实现
╰つ゛木槿
javaeasyuijavascriptpythonjava自然语言处理
目录一、自动检测和机器审核实现步骤1.文本预处理步骤细节:2.关键词检测步骤细节:3.情感分析与情境理解步骤细节:4.机器学习模型训练步骤细节:5.深度学习模型步骤细节:6.多模态审查步骤细节:7.用户行为分析与违规预测步骤细节:总结二、常用的分词工具1.jieba2.THULAC3.HanLP4.SnowNLP5.LAC(LexicalAnalysisofChinese)6.PyLDAvis(结
- 【CV】25.1.7 arxiv更新速递
hinmer
arxivCV每日更新python人工智能计算机视觉chatgpt目标检测aiAIGC
—第1篇----关键词:手势识别,计算机视觉,低光照条件,机器学习,RaspberryPi,OpenCV论文链接-摘要:手势识别是一种基于计算机视觉技术的感知用户界面,允许计算机将人类动作解释为命令,使用户无需使用手与计算机交流,从而使鼠标和键盘变得多余。手势识别的主要弱点是光线条件,因为手势控制依赖于摄像头。摄像头用于在2D和3D中解释手势,因此提取的信息可能因光源而异。系统的限制是无法在黑暗环
- 【包邮送书】你好!Python
Mindtechnist
粉丝福利python网络开发语言机器学习
欢迎关注博主Mindtechnist或加入【智能科技社区】一起学习和分享Linux、C、C++、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和技术。关注公粽号《机器和智能》回复关键词“python项目实战”即可获取美哆商城视频资源!博主介绍:CSDN博客专家,CSDN优质创作者,CSDN实力新星,CSDN内容
- 基于遗传算法的城市旅行问题(TSP)求解
NovakG_
深度学习python算法深度学习神经网络
1.遗传算法背景介绍遗传算法是一种基于生物进化论中的自然选择和遗传机制的优化算法,模拟了生物进化过程以搜索最优解。通过仿真染色体的交叉、变异等操作,遗传算法将求解过程转换为类似生物进化的迭代运算。该算法在解决复杂的组合优化问题时,通常比常规优化算法更高效,且具有广泛应用,包括组合优化、机器学习、信号处理、自适应控制和人工生命等领域2.遗传算法基本解题思路遗传算法的设计思路主要受到大自然中生物体进化
- R数据分析:多分类问题预测模型的ROC做法及解释
公众号Codewar原创作者
R数据分析
有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评估指标。那么肯定是统一成ROC了,刚好借这个机会给大家讲讲ROC在多分类问题情形下的具体使用和做法。ROC曲线回顾ROC曲线(ReceiverOperatingCharacteristicCurve)
- 【2025 ODA teigha .NET系列开发教程 第五章】给CAD实体添加附属数据XDATA,包括源码
三好学生~张旺
ODATeigha.NET开发教程.net
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档2025ODAteigha.NET系列开发教程系列文章目录AutoCADXData扩展数据开发指南什么是XData?XData的两种存储方式1.全局字典存储(XRecord)2.实体附加存储步骤1:注册应
- 【数据挖掘实战】 房价预测
机器学习司猫白
数据挖掘人工智能python机器学习
本次对kaggle中的入门级数据集,房价回归数据集进行数据挖掘,预测房屋价格。本人主页:机器学习司猫白机器学习专栏:机器学习实战PyTorch入门专栏:PyTorch入门深度学习实战:深度学习ok,话不多说,我们进入正题吧概述本次竞赛有79个解释变量(几乎)描述了爱荷华州艾姆斯住宅的各个方面,需要预测每套住宅的最终价格。数据集描述本次数据集已经上传,大家可以自行下载尝试文件说明train.csv-
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
网罗开发
AI大模型人工智能机器学习
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- Copilot 概述
计算机萍萍学姐
copilotcopilot人工智能机器学习
Copilot是什么?它有什么用途?Copilot是由人工智能公司和GitHub合作开发的一个基于人工智能的代码提示工具,它可以利用机器学习技术和大量训练数据生成高质量的代码。Copilot的目标是在保持代码质量和可读性的前提下,提高开发者的编码效率,使得编码工作更为高效和便捷。Copilot的出现是解决编程过程中可能遇到的一些难点和瓶颈问题,特别是在快速迭代的敏捷开发场景中,提高编码效率和减少编
- 让旅游更智能:基于AR的旅游导览应用解析
Echo_Wish
Python笔记Python算法旅游arrestful
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
人工智能机器学习深度学习
摘要随着系统规模的扩大和复杂性增加,传统基于规则的日志分析方法难以识别隐藏的复杂异常模式。本文将介绍基于机器学习的日志异常检测技术,包括模型选择、特征工程及实现步骤。通过具体的代码示例与图表,展示如何高效检测异常日志,并提供应用场景与优化策略。引言日志是系统运行状态的关键数据来源,但面对海量日志数据,传统规则式分析显得力不从心。机器学习能够根据日志的历史数据和行为模式,通过训练模型检测异常情况,不
- YOLOv5模型版本详解:n/s/m/l的区别与选型指南
我的青春不太冷
YOLOandroid经验分享程序人生笔记测试
文章目录一、模型版本概述二、核心参数对比2.1基本性能指标2.2计算复杂度三、架构设计差异3.1网络宽度控制3.1.1通道数变化3.1.2参数配置对比3.2网络深度配置四、性能表现分析4.1精度-速度曲线4.2资源消耗对比五、工程部署建议5.1设备适配方案5.2模型优化技巧5.2.1量化压缩5.2.2网络剪枝六、版本选型指南6.1决策流程图6.2场景化推荐七、总结建议一、模型版本概述YOLOv5是
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C