- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- 基于分组 NMS 的检测模型后处理改进
Lunar*
目标检测算法与优化目标检测深度学习python
引言在目标检测任务中,后处理阶段的非极大值抑制(Non-MaximumSuppression,NMS)是至关重要的一环,主要用于去除高度重叠的冗余预测框。然而,在某些场景中,不同类别的目标可能会被网络同时预测为多个相近的类别,例如:交通工具检测场景:同一辆车可能被误检测为“自行车”和“电动车”。动物检测场景:同一只动物可能被误检测为“狼”和“狗”。家电检测场景:同一台设备可能被误检测为“微波炉”和
- 3.13 YOLO V3
不要不开心了
机器学习pytorch深度学习
今天的内容为YOLO-V3YOLO系列-YOLO-V3,最大的改进就是网络结构,使其更适合小目标检测。-特征做得更细致,融入多持续特征图信息来预测不同规格物体。-先验框更丰富了,3种scale,每种3个规格,一共9种。-softmax改进,预测多标签任务。-多scale-为了能检测到不同大小的物体,设计了3个scale。-scale变换经典方法-左图:图像金字塔;右图:单一的输入。-scale变换
- 基于YOLOv5的车牌识别系统:从数据集到UI界面的实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪
1.引言随着智能交通系统的发展,车牌识别技术已成为交通管理、停车场自动化、路面监控等应用中的关键技术之一。车牌识别系统(LicensePlateRecognition,LPR)主要用于识别车辆的车牌号码,并将其转化为可以进一步处理的数据。车牌识别系统通常由图像处理、字符识别、目标检测等多种技术组成。近年来,随着深度学习技术的飞速发展,基于卷积神经网络(CNN)的目标检测算法,如YOLO(YouOn
- 点云从入门到精通技术详解100篇-基于激光雷达点云的三维目标检测
格图素书
目标检测人工智能计算机视觉
目录前言图像目标检测算法研究现状点云目标检测算法研究现状基于投影图的方法基于体素的方法基于点云的多模态融合方法2地面点云滤波及神经网络2.1目标检测数据集及采集设备2.1.1KITTI数据集2.1.2车载激光雷达2.2地面点云滤波算法2.2.1RANSAC算法2.2.2CSF算法本文篇幅较长,分为上下两篇,下篇详见基于激光雷达点云的三维目标检测(续)前言近几年来,在计算机视觉领域,利用深度学习卷积
- 【YOLOv11[基础]】目标检测OD | 导出ONNX模型 | ONN模型推理以及检测结果可视化 | python
Jackilina_Stone
【改进】YOLO系列人工智能python计算机视觉YOLO深度学习目标检测
本文将导出YOLO11.pt模型对应的ONNX模型,并且使用ONNX模型推理以及结果的可视化。话不多说,先看看效果图吧!!!目录一导出ONNX模型二推理及检测结果可视化1代码2效果图
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- 图像识别技术与应用课后总结(18)
一元钱面包
人工智能
·YOLO-V3RetinaNet系列,YOLO-V3在不同变体(如YOLOV3-320、YOLOV3-416等)下,在推理时间和精度上有不同的表现,展示了其在速度和准确性上的平衡。YOLO-V3的改进点网络结构:相比之前版本,YOLO-V3的网络结构进行了优化,使其更适合小目标检测。特征处理:对特征的处理更加细致,通过融入多持续特征图信息来预测不同规格的物体。先验框:先验框更加丰富,有3种sca
- YOLOv8改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含C2f二次创新)
Limiiiing
YOLOv8改进专栏YOLO计算机视觉深度学习目标检测
一、本文介绍本文记录的是基于EMA模块的YOLOv8目标检测改进方法研究。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv8的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。专栏目录:YOLOv8改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Ne
- YOLOv5改进:在C3块不同位置添加EMA注意力机制,有效提升计算机视觉性能
UksApps
YOLO计算机视觉深度学习
计算机视觉中的目标检测是一个重要的任务,而YOLOv5是目前广泛应用的一种高效目标检测算法。为了进一步提升YOLOv5的性能,我们在C3块的不同位置添加了EMA(ExponentialMovingAverage)注意力机制。EMA注意力机制是一种用于提升模型的感知能力和特征表达能力的技术。在YOLOv5中,我们将EMA注意力机制嵌入到C3块中,以增强这一块的特征表示能力。下面是我们改进的YOLOv
- 实现一个超轻量级实例分割网络的思路
CV工程师小朱
深度学习笔记深度学习应用实例分割yolactpicodet深度学习
文章目录前言一、基本思路二、picodet三、yolact三、picodet+yolact总结前言在某些工业领域,由于成本问题算力有限,只能实时跑一些超轻量级网络,拿目标检测来说,例如yolo-fast,pp-picodet这些。如果要跑实例分割,目前好像没有什么超轻量级的网络。所以就有想法如何实现一个超轻量级实例分割网络。一、基本思路基于超轻量级目标检测pp-picodet,增加一个掩膜分支。参
- 如何提升OmniParser V2的小元素识别率——YOLOv8 增加 P2 层的性能变化解析
AI-AIGC-7744423
目标跟踪人工智能计算机视觉
YOLOv8增加P2层通过牺牲部分计算效率换取了小目标检测性能的显著提升,尤其适用于高分辨率、小目标密集的场景。开发者需根据具体任务需求,在精度与速度之间进行合理权衡,并通过模型轻量化技术优化部署效果。更多技术细节可参考微软等机构的开源实现136。YOLOv8增加P2层的性能变化解析一、性能提升方向小目标检测精度显著提高原理:P2层对应更高分辨率的浅层特征图(如1/4下采样),能捕捉更细粒度的纹理
- 用OpenCV写个视频播放器可还行?(Python版)
程序员Linc
计算机视觉opencv音视频python
引言提到OpenCV,大家首先想到的可能是图像处理、目标检测,但你是否想过——用OpenCV实现一个带进度条、倍速播放、暂停功能的视频播放器?本文将通过一个实战项目,带你深入掌握OpenCV的视频处理能力,并解锁以下功能:基础播放/暂停动态倍速调节(0.5x~4x)交互式进度条实时时间戳显示文末提供完整代码,可直接运行!一、环境准备安装OpenCVpipinstallopencv-python#P
- AI:230-YOLOv8与RT-DETR的完美结合 | 重塑目标检测技术的前沿【保姆级教程】
一键难忘
精通AI实战千例专栏合集人工智能YOLO目标检测YOLOv8与RT-DETR
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~文章目录YOLOv8与RT-DETR的完美结合|重塑目标检测
- 51-53 CVPR 2024 | DriveWorld:通过自动驾驶世界模型进行 4D 预训练场景理解 (含模型数据流梳理)
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶人工智能AIGCstablediffusion计算机视觉智慧城市
24年5月,北京大学、国防创新研究院无人系统技术研究中心、中国电信人工智能研究院联合发布了DriveWorld:4DPre-trainedSceneUnderstandingviaWorldModelsforAutonomousDriving。DriveWorld在UniAD的基础上又有所成长,提升了自动驾驶目标检测、目标追踪、3D占用、运动预测及规划的性能,后期扩大数据集和调整骨干网络大小应该会
- RK3568笔记六十八:Yolov11目标检测部署测试
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。看到yolov11出了,山水无移大佬测试通过,跟个风测试一下效果。使用的是正点原子的ATK-DLRK3568开发板。这里不训练自己的模型了,使用官方模型测试。一、环境搭建1、下载源码ultralytics/ultralytics:UltralyticsYOLO112、创建虚拟环境condacreate-nyolov11_envpython=3.83、激活con
- 旋翼机自主着陆-主要技术难点
兜兜有糖_DC
位姿测量无人机智能控制UAVlanding自动计算机视觉深度学习算法
搜索阶段:远距离:目标为几个像素,并且淹没在环境里完全没有任何目标或目标偶尔出现,如何进行导航中远距离目标部分容易被遮挡,如何进行目标检测在光线条件较差的环境下,目标检测出现误判和无法工作的情况近距离目标在视场中占据较大部分,飞机的剧烈姿态变换容易引起目标丢失受到飞机震动和相机抖动限制,特征点提取误差较大,位姿解算精度不高当前解决方案:1.依靠GPS、RTK等设备进行目标追踪存在与目标的通信特定的
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- 卷积神经网络(笔记01)
天行者@
cnn人工智能深度学习
视觉处理三大任务:分类、目标检测、图像分割CNN网络主要有三部分构成:卷积层(ConvolutionalLayer)、池化层(PoolingLayer)和激活函数一、解释卷积层中的偏置项是什么,并讨论在神经网络中引入偏置项的好处。在卷积神经网络(CNN)的卷积层里,卷积操作本质上是输入数据与卷积核(滤波器)进行逐元素相乘再求和的过程。偏置项(Bias)是一个额外的可学习参数,对于每个卷积核而言,都
- 目标检测
煤烦恼
目标检测人工智能大数据pytorch
1.概念:目标检测是识别图片中物体并确定其位置的多任务技术,面临目标种类数量多、尺度不均、外部环境干扰等问题。这里的数字为置信度2.数据集:VOC数据集分4大类20小类;COCO数据集含20万图像、80个类别、超50万目标标注,平均每图7.2个目标。3.GroundTruth格式:包含类别和边界框坐标,常见的有YOLO(归一化中心点坐标和宽高)、VOC(左上角和右下角坐标)、COCO(左上角坐标和
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- 深度解析:DETR的多尺度特征融合
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
"深度解析:DETR的多尺度特征融合"作者:禅与计算机程序设计艺术1.背景介绍1.1目标检测的挑战与传统方法的局限性目标检测是计算机视觉领域中的一个基本任务,其目标是识别图像或视频中所有感兴趣的目标,并确定它们的位置和类别。传统的目标检测方法,如FasterR-CNN和YOLO,通常依赖于预定义的锚框或候选区域来生成目标proposals。然而,这些方法存在一些固有的局限性:人工先验知识:锚框的设
- 目标检测项目
sho_re
神经网络人工智能pytorch目标检测
·识别图片中有哪些物体并且找到物体的存在位置多任务:位置+类别目标种类与数量繁多的问题目标尺度不均的问题遮挡、噪声等外部环境干扰VOC数据集:PASCALVOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛。4大类,20小类VOC2007:9963图片/24640目标VOC2012:23080图片/54900目标·COCO数据集:起源于微软2014
- Python通过YOLO格式TXT标签文件在图像中画框
CHERISH_KDX
pythonYOLO人工智能
使用场景检测数据集标注是否有误:在目标检测算法中需要标注自己的数据集,为了更加方便的检查数据集标注是否有误,可以使用该工具将标注结果绘制在图像中并查看。美化识别结果中的检测框:在一些目标检测场景中,YOLO检测算法原始的检测框绘制会导致重叠、颜色冲突、字体过大等问题。可以使用该工具进行修改。代码importosimportcv2classcheck_label:def__init__(self,c
- 基于YOLOv5的烟雾检测系统:从数据集准备到UI界面实现
深度学习&目标检测实战项目
YOLOui分类数据挖掘目标跟踪
1.引言烟雾是火灾发生的一个重要早期信号。烟雾检测能够在火灾初期及时识别并报警,为火灾的扑灭争取宝贵的时间。因此,烟雾检测的研究一直是计算机视觉领域中的一个热点问题。近年来,随着深度学习技术的发展,目标检测算法被广泛应用于烟雾检测,尤其是基于YOLOv5的目标检测模型,由于其较高的精度和较低的计算开销,已经成为许多实时检测系统的首选模型。在这篇博客中,我们将介绍如何使用YOLOv5模型进行烟雾检测
- 【无标题】
东东就是我
opencv计算机视觉人工智能
1.计算机视觉与图像处理计算机视觉技术涵盖从图像预处理到目标检测的全流程,是工业视觉系统的核心部分。知识点扩展OpenCV基础cv2.imread()、cv2.imshow()、cv2.imwrite()进行基本图像读取、显示、保存cv2.cvtColor()进行颜色空间转换(RGB↔GRAY,RGB↔HSV)cv2.resize()进行图像缩放cv2.flip()进行图像翻转(水平/垂直)imp
- yolov5代码详解--1.python代码脚本
三炭先生
yolo算法YOLOpython算法
一、detect.py作为YOLOv5模型推理的核心执行文件,detect.py实现了从数据加载到结果输出的完整目标检测流水线。本文只讲代码中最主要的opt内函数的含义,这是detect最核心的东西,至于其他的代码注释我会放在下面,有什么不懂可以评论区提问。下面对每个命令行参数进行详细介绍,说明它们在检测推理过程中的含义和作用:--weights指定模型权重文件的路径(或多个路径),也可以是远程T
- 用OpenCV写个视频播放器可还行?(C++版)
程序员Linc
OpenCVopencv音视频c++opencv4.11
引言提到OpenCV,大家首先想到的可能是图像处理、目标检测,但你是否想过——用OpenCV实现一个带进度条、倍速播放、暂停功能的视频播放器?本文将通过一个实战项目,带你深入掌握OpenCV的视频处理能力,并解锁以下功能:基础播放/暂停动态倍速调节(0.5x~4x)交互式进度条实时时间戳显示文末提供完整代码,可直接运行!一、环境准备安装OpenCV请参考其他博客,C++版本的OpenCV安装,每个
- YOLOv7-Tiny:轻量化实时目标检测的革新实践
追寻向上
YOLO目标检测人工智能
一、模型定位与核心优势YOLOv7-Tiny作为YOLOv7系列的轻量级版本,专为边缘计算设备和实时检测场景设计。相比标准YOLOv7,其参数量减少约60%(仅6.02M),计算量降至13.2GFLOPs,在保持较高检测精度的同时,推理速度提升至68FPS(NVIDIAV100)。该模型适用于无人机、嵌入式设备、移动端等资源受限场景,在实时性与精度之间实现了极佳平衡。二、模型架构创新主干网络优化深
- 了解目标检测:两阶段检测(Two-Stage Detection)、单阶段检测(Single-Stage Detection)和区域建议网络(RPN)
fydw_715
深度学习基础目标检测网络目标跟踪
了解目标检测:两阶段检测(Two-StageDetection)、单阶段检测(Single-StageDetection)和区域建议网络(RPN)在目标检测领域,模型架构在很大程度上决定了模型的性能、速度和应用场景。本文将详细探讨两类主要的目标检测方法——两阶段检测(Two-StageDetection)和单阶段检测(Single-StageDetection),以及它们的核心组件之一:区域建议网
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本