- 论文阅读笔记(十九):YOLO9000: Better, Faster, Stronger
__Sunshine__
笔记YOLO9000detectionclassification
WeintroduceYOLO9000,astate-of-the-art,real-timeobjectdetectionsystemthatcandetectover9000objectcategories.FirstweproposevariousimprovementstotheYOLOdetectionmethod,bothnovelanddrawnfrompriorwork.Theim
- 论文阅读笔记: DINOv2: Learning Robust Visual Features without Supervision
小夏refresh
论文计算机视觉深度学习论文阅读笔记深度学习计算机视觉人工智能
DINOv2:LearningRobustVisualFeatureswithoutSupervision论文地址:https://arxiv.org/abs/2304.07193代码地址:https://github.com/facebookresearch/dinov2摘要大量数据上的预训练模型在NLP方面取得突破,为计算机视觉中的类似基础模型开辟了道路。这些模型可以通过生成通用视觉特征(即无
- SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记
慘綠青年627
论文阅读笔记深度学习
SAFEFL:MPC-friendlyFrameworkforPrivateandRobustFederatedLearning适用于私有和鲁棒联邦学习的MPC友好框架SAFEFL,这是一个利用安全多方计算(MPC)来评估联邦学习(FL)技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。概述传统机器学习(ML):集中收集数据->隐私保护问题privacy-preservingML(PPML)采
- A Tutorial on Near-Field XL-MIMO Communications Towards 6G【论文阅读笔记】
Cc小跟班
【论文阅读】相关论文阅读笔记
此系列是本人阅读论文过程中的简单笔记,比较随意且具有严重的偏向性(偏向自己研究方向和感兴趣的),随缘分享,共同进步~论文主要内容:建立XL-MIMO模型,考虑NUSW信道和非平稳性;基于近场信道模型,分析性能(SNRscalinglaws,波束聚焦、速率、DoF)XL-MIMO设计问题:信道估计、波束码本、波束训练、DAMXL-MIMO信道特性变化:UPW➡NUSW空间平稳–>空间非平稳(可视区域
- 时序预测相关论文阅读笔记
能力越小责任越小YA
论文阅读笔记时序预测Transformer
笔记链接:【有道云笔记】读论文(记录)https://note.youdao.com/s/52ugLbot用于个人学习记录。
- Your Diffusion Model is Secretly a Zero-Shot Classifier论文阅读笔记
Rising_Flashlight
论文阅读笔记计算机视觉
YourDiffusionModelisSecretlyaZero-ShotClassifier论文阅读笔记这篇文章我感觉在智源大会上听到无数个大佬讨论,包括OpenAISora团队负责人,谢赛宁,好像还有杨植麟。虽然这个文章好像似乎被引量不是特别高,但是和AI甚至人类理解很本质的问题很相关,即是不是要通过生成来构建理解的问题,文章的做法也很巧妙,感觉是一些学者灵机一动的产物,好好学习一个!摘要这
- Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport论文阅读笔记
猪猪想上树
论文阅读笔记
ConditionalFlowMatching:Simulation-FreeDynamicOptimalTransport笔记发现问题连续正规化流(CNF)是一种有吸引力的生成式建模技术,但在基于模拟的最大似然训练中受到了限制。解决问题介绍一种新的条件流匹配(CFM),一种针对CNFs的免模拟训练目标。具有稳定的回归目标,用于扩散模型中的随机流,但享有确定性流模型的有效推断。与扩散模型和CNF目
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- 【论文阅读笔记】(2015 ICML)Unsupervised Learning of Video Representations using LSTMs
小吴同学真棒
学习人工智能LSTM动作识别无监督自监督self-supervised
UnsupervisedLearningofVideoRepresentationsusingLSTMs(2015ICML)NitishSrivastava,ElmanMansimov,RuslanSalakhutdinovNotesContributionsOurmodelusesanencoderLSTMtomapaninputsequenceintoafixedlengthrepresent
- 使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
目录引言背景方法离散化离散化的导数算子速度插值广义的半拉格朗日步重新网格化双向流固耦合和质量守恒原文:Klingner,BryanM.,etal.“Fluidanimationwithdynamicmeshes.”ACMSIGGRAPH2006Papers.2006.820-825.引言使用[Alliezetal.,2005]的方法动态生成不规则的四面体网格根据边界的位置、边界的形状、基于流体和速
- 【论文阅读笔记】AutoAugment:Learning Augmentation Strategies from Data
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
AutoAugment:LearningAugmentationStrategiesfromData摘要研究方法:本文描述了一种名为AutoAugment的简单程序,通过这个程序可以自动寻找改进的数据增强策略。研究设计了一个策略空间,其中策略包含多个子策略,在每个小批量数据中针对每张图片随机选择一个子策略。每个子策略由两个操作组成,每个操作是图像处理函数(如平移、旋转或剪切),以及应用这些函数的概
- 【论文阅读笔记】Contrastive Learning with Stronger Augmentations
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
ContrastiveLearningwithStrongerAugmentations摘要基于提供的摘要,该论文的核心焦点是在对比学习领域提出的一个新框架——利用强数据增强的对比学习(ContrastiveLearningwithStrongerAugmentations,简称CLSA)。以下是对摘要的解析:问题陈述:表征学习(representationlearning)已在对比学习方法的推动
- 使用八叉树模拟水和烟雾 Simulating Water and Smoke with an Octree Data Structure 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
原文:Losasso,Frank,FrédéricGibou,andRonFedkiw.“Simulatingwaterandsmokewithanoctreedatastructure.”Acmsiggraph2004papers.2004.457-462.引言这篇文章扩展了[Popinet2003]的工作,拓展到表面自由流,并且使得八叉树不受限制自适应网格划分的一个缺点是,它的模板不是均匀的,
- PointMixer论文阅读笔记
ZHANG8023ZHEN
论文阅读笔记
MLP-mixer是最近很流行的一种网络结构,比起Transformer和CNN的节构笨重,MLP-mixer不仅节构简单,而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳,PointMixer就是在保留了MLP-mixer优点的同时,还可以很好的处理点云问题。PointMixer可以很好的处理intra-set,inter-set,hierarchical-set的点云。
- DCNNs之DNA论文阅读笔记
苏十一0421
Article:DeepConvolutionalNeuralNetworkArchitectureWithReconfigurableComputationPatternsJournalTitle:IEEETransactionsonVeryLargeScaleIntegration(VLSI)SystemsIssue:No.08-Aug.(2017vol.25)ISSN:1063-8210pp
- 【论文阅读笔记】UNSUPERVISED REPRESENTATION LEARNING FOR TIME SERIES WITH TEMPORAL NEIGHBORHOOD CODING
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
UNSUPERVISEDREPRESENTATIONLEARNINGFORTIMESERIESWITHTEMPORALNEIGHBORHOODCODINGABSTRACT 本文提出了一种自监督框架,名为“时间邻域编码”(TemporalNeighborhoodCoding,TNC),用于学习非平稳时间序列的可泛化表示。该方法利用信号生成过程的局部平滑性来定义具有平稳性质的时间邻域。通过使用去偏差对
- Deep Learning Workload Scheduling in GPU Datacenters:Taxonomy, Challenges and Vision 论文阅读
牛码当驴
云计算算法云计算论文阅读
【论文阅读笔记】DeepLearningWorkloadSchedulinginGPUDatacenters:Taxonomy,ChallengesandVision论文链接GPU数据中心的DL工作负载调度:分类、挑战、展望AbstractDeeplearning(DL)showsitsprosperityinawidevarietyoffields.ThedevelopmentofaDLmode
- 论文阅读笔记 RPT: Learning Point Set Representation for Siamese Visual Tracking
faverr
论文阅读笔记RPT:LearningPointSetRepresentationforSiameseVisualTracking综合了可形变卷积、RepPoints检测、多层级卷积特征等思想论文地址代码地址现有跟踪方法中存在的问题现有的跟踪方法往往采用矩形框或四边形来表示目标的状态(位置和大小),这种方式忽略了目标自身会变化的特点(形变、姿态变化),因此作者采用表示点(Representative
- SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage——论文泛读
妙BOOK言
论文阅读论文阅读KV存储lsm-tree
FAST2021Paper论文阅读笔记整理问题键值(KV)存储支持许多关键的应用和服务。它们在内存中执行快速处理,但通常受到I/O性能的限制。最近出现的高速NVMeSSD推动了新KV系统设计,以利用其低延迟和高带宽。挑战当前基于LSM树的KV存储未能充分发挥NVMeSSD的全部潜力。例如,在OptaneP4800X上部署RocksDB,相对于SATASSD,对于50%写入的工作负载,吞吐量仅提高了
- DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient for Search, Inse...——论文泛读
妙BOOK言
论文阅读论文阅读KV存储
EuroSys2023Paper论文阅读笔记整理问题在现实生活中,许多数据集都是复杂且动态的,即它们的键密度在整个键空间上变化,它们的键分布随时间变化。对于这样的动态数据集,使得索引结构能够高效支持数据管理中的所有关键操作,特别是搜索、插入和扫描,是一项具有挑战性的任务。挑战对于内存中的数据管理系统,例如内存数据库和键值存储[4,12,34,35,56],索引结构的效率至关重要,强烈影响系统的最终
- Gan论文阅读笔记
Alex·Fall
深度学习生成对抗网络论文阅读笔记
GAN论文阅读笔记2014年老论文了,主要记录一些重要的东西。论文链接如下:GenerativeAdversarialNets(neurips.cc)文章目录GAN论文阅读笔记出发点创新点设计训练代码网络结构代码测试代码出发点Deepgenerativemodelshavehadlessofanimpact,duetothedifficultyofapproximatingmanyintracta
- PairLIE论文阅读笔记
Alex·Fall
低光增强论文阅读笔记
PairLIE论文阅读笔记论文为2023CVPR的LearningaSimpleLow-lightImageEnhancerfromPairedLow-lightInstances.论文链接如下:openaccess.thecvf.com/content/CVPR2023/papers/Fu_Learning_a_Simple_Low-Light_Image_Enhancer_From_Paire
- 点云transformer算法: FlatFormer 论文阅读笔记
zhaoyqcsdn
深度学习transformer算法论文阅读
代码:https://github.com/mit-han-lab/flatformer论文:https://arxiv.org/abs/2301.08739[FlatFormer.pdf]Flatformer是对点云检测中的backbone3d部分的改进工作,主要在探究怎么高效的对点云应用transformer具体的工作如下:一个缩写:**PCTs即pointcloudtransformers*
- 【论文阅读笔记】InstantID : Zero-shot Identity-Preserving Generation in Seconds
LuH1124
论文阅读笔记图像编辑文生图论文阅读文生图扩散模型人脸识别
InstantID:秒级零样本身份保持生成理解摘要Introduction贡献RelatedWorkText-to-imageDiffusionModelsSubject-drivenImageGenerationIDPreservingImageGenerationMethod实验定性实验消融实验与先前方法的对比富有创意的更多任务新视角合成身份插值多身份区域控制合成结论和未来工作project:
- 【论文阅读笔记】Taming Transformers for High-Resolution Image Synthesis
LuH1124
论文阅读笔记论文阅读transformercnn图像生成
TamingTransformersforHigh-ResolutionImageSynthesis记录前置知识AbstractIntroductionRelatedWorkMethodLearninganEffectiveCodebookofImageConstituentsforUseinTransformersLearningtheCompositionofImageswithTransfo
- 【论文阅读笔记】Make-A-Character: High Quality Text-to-3D Character Generation within Minutes
LuH1124
论文阅读笔记数字人Relight论文阅读3d数字人计算机图形学头发生成
【论文阅读笔记】分钟级别的高质量文本到3D角色生成AbstractIntroductionMethodLL/VM解析人脸面部属性并生成根据密集地标重建face/head形状几何生成纹理生成纹理提取漫反射反照率(DiffusionAlbedo)估计纹理矫正和补全头发生成(牛了)资产匹配实验未来工作paperhttps://arxiv.org/abs/2312.15430Demohttps://hug
- 【论文阅读笔记】Würstchen: AN EFFICIENT ARCHITECTURE FOR LARGE-SCALETEXT-TO-IMAGE DIFFUSION MODELS
LuH1124
论文阅读笔记文生图论文阅读text2img扩散模型
WURSTCHEN:用于大规模文本到图像扩散模型的高效架构摘要贡献方法训练推理实验结论附录附录A附录B附录C附录D附录E这篇文章提出了一个高效的用于文本到图像生成模型架构,整体思路比较直白,在不损失图像生成质量的情况下,相比于现有T2I模型(SD1.4,SD2.1等)大大节约了成本。附录部分给了一些有趣的东西,比如FID的鲁棒性整篇文章还有点疑惑,比如阶段B的训练,使用的模型;节省成本主要是在说C
- 【论文阅读笔记】Advances in 3D Generation: A Survey
LuH1124
论文阅读笔记3DGeneration论文阅读3d神经表示渲染
Advancesin3DGeneration:ASurvey挖个坑,近期填完摘要time:2024年1月31日paper:arxiv机构:腾讯挖个坑,近期填完摘要生成3D模型位于计算机图形学的核心,一直是几十年研究的重点。随着高级神经表示和生成模型的出现,3D内容生成领域发展迅速,能够创建越来越高质量和多样化的3D模型。该领域的快速增长使得很难跟上所有最近的发展。在本次调查中,我们旨在介绍3D生成
- 【论文阅读笔记】Transformer-XL
没啥信心
Paper:Transformer-XL:AttentiveLanguageModelsBeyondaFixed-LengthContext重点关注论文中的相对位置编码及提高融合了相对位置信息的attentionscore的计算效率的部分。AbstractTransformer具有学习长依赖的能力,但受限于语言模型固定长度上下文的限定。本文提出的Transformer-XL神经网络架构可以在不打破
- 【论文阅读笔记】Time Series Contrastive Learning with Information-Aware Augmentations
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimeSeriesContrastiveLearningwithInformation-AwareAugmentations摘要背景:在近年来,已经有许多对比学习方法被提出,并在实证上取得了显著的成功。尽管对比学习在图像和语言领域非常有效和普遍,但在时间序列数据上的应用相对较少。对比学习的关键组成部分:对比学习的一个关键组成部分是选择适当的数据增强(augmentation)方式,通过施加一些先
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(