B 地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。
给出 B 地区的村庄数 N N N,村庄编号从 0 0 0 到 N − 1 N-1 N−1,和所有 M M M 条公路的长度,公路是双向的。并给出第 i i i 个村庄重建完成的时间 t i t_i ti,你可以认为是同时开始重建并在第 t i t_i ti 天重建完成,并且在当天即可通车。若 t i t_i ti 为 0 0 0 则说明地震未对此地区造成损坏,一开始就可以通车。之后有 Q Q Q 个询问 ( x , y , t ) (x,y,t) (x,y,t),对于每个询问你要回答在第 t t t 天,从村庄 x x x 到村庄 y y y 的最短路径长度为多少。如果无法找到从 x x x 村庄到 y y y 村庄的路径,经过若干个已重建完成的村庄,或者村庄 x x x 或村庄 y y y 在第 t t t 天仍未重建完成,则需要返回 -1
。
第一行包含两个正整数 N , M N,M N,M,表示了村庄的数目与公路的数量。
第二行包含 N N N个非负整数 t 0 , t 1 , … , t N − 1 t_0, t_1,…, t_{N-1} t0,t1,…,tN−1,表示了每个村庄重建完成的时间,数据保证了 t 0 ≤ t 1 ≤ … ≤ t N − 1 t_0 ≤ t_1 ≤ … ≤ t_{N-1} t0≤t1≤…≤tN−1。
接下来 M M M行,每行 3 3 3个非负整数 i , j , w i, j, w i,j,w, w w w为不超过 10000 10000 10000的正整数,表示了有一条连接村庄 i i i与村庄 j j j的道路,长度为 w w w,保证 i ≠ j i≠j i=j,且对于任意一对村庄只会存在一条道路。
接下来一行也就是 M + 3 M+3 M+3行包含一个正整数 Q Q Q,表示 Q Q Q个询问。
接下来 Q Q Q行,每行 3 3 3个非负整数 x , y , t x, y, t x,y,t,询问在第 t t t天,从村庄 x x x到村庄 y y y的最短路径长度为多少,数据保证了 t t t是不下降的。
共 Q Q Q行,对每一个询问 ( x , y , t ) (x, y, t) (x,y,t)输出对应的答案,即在第 t t t天,从村庄 x x x到村庄 y y y的最短路径长度为多少。如果在第t天无法找到从 x x x村庄到 y y y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄 y y y在第 t t t天仍未修复完成,则输出 − 1 -1 −1。
4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4
-1
-1
5
4
对于 30 % 30\% 30%的数据,有 N ≤ 50 N≤50 N≤50;
对于 30 % 30\% 30%的数据,有 t i = 0 t_i= 0 ti=0,其中有 20 % 20\% 20%的数据有 t i = 0 t_i = 0 ti=0且 N > 50 N>50 N>50;
对于 50 % 50\% 50%的数据,有 Q ≤ 100 Q≤100 Q≤100;
对于 100 % 100\% 100%的数据,有 N ≤ 200 N≤200 N≤200, M ≤ N × ( N − 1 ) / 2 M≤N \times (N-1)/2 M≤N×(N−1)/2, Q ≤ 50000 Q≤50000 Q≤50000,所有输入数据涉及整数均不超过 100000 100000 100000。
思路: 一看到找最短路,就会想到floyd和dijkstra,但根据题意,如果每次询问的时候都使用这两张种算法其中之一跑一遍,那时间肯定就超标了。
但题目又给出了“每个村庄的重建时间单调不减”的条件,那么从本质上再看看floyd算法,如果我在询问时更新算法中松弛操作的中转点,由于询问时间单调不减,那么此时的最短路也可以保证所有的道路都只经过已重建好的村庄,同时时间复杂度也下降到了可以接受的程度。
代码:
#include
using namespace std;
int n, m, q, t[200], mp[200][200];
int main(){
cin >> n >> m;
for(int i = 0; i < n; i++){
cin >> t[i];
}
memset(mp, 0x3f, sizeof(mp));
for(int i = 0; i < n; i++) mp[i][i] = 0;
for(int i = 0; i < m; i++){
int a, b, c;
cin >> a >> b >> c;
mp[a][b] = c;
mp[b][a] = c;
}
cin >> q;
int cur = 0;
for(int k = 0; k < q; k++){
int a, b, c;
cin >> a >> b >> c;
while(t[cur] <= c && cur < n){
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
mp[i][j] = min(mp[i][j], mp[i][cur] + mp[cur][j]);
}
}
cur++;
}
if(t[a] > c || t[b] > c){
cout << -1 << endl;
}
else{
if(mp[a][b] == 0x3f3f3f3f) cout << -1 << endl;
else cout << mp[a][b] << endl;
}
}
return 0;
}