深度学习全功能开发开源平台汇总

深度学习全功能开发平台

1. 微软 computervision-recipes平台

基本情况

框架:PyTorch

简介地址:

https://mp.weixin.qq.com/s/InFCT7CCGmHDly-IQcOqnA

开源地址:

https://github.com/microsoft/computervision-recipes

计算机视觉方向包括

图像分类、图像相似度计算、目标检测、物体及人体关键点检测、图像分割、动作识别、目标跟踪、拥挤人群计数等计算机视觉热门方向

Scenario Support Description
Classification Base Image Classification is a supervised machine learning technique to learn and predict the category of a given image.
Similarity Base Image Similarity is a way to compute a similarity score given a pair of images. Given an image, it allows you to identify the most similar image in a given dataset.
Detection Base Object Detection is a technique that allows you to detect the bounding box of an object within an image.
Keypoints Base Keypoint detection can be used to detect specific points on an object. A pre-trained model is provided to detect body joints for human pose estimation.
Segmentation Base Image Segmentation assigns a category to each pixel in an image.
Action recognition Base Action recognition to identify in video/webcam footage what actions are performed (e.g. “running”, “opening a bottle”) and at what respective start/end times. We also implemented the i3d implementation of action recognition that can be found under (contrib)[contrib].
Tracking Base Tracking allows to detect and track multiple objects in a video sequence over time.
Crowd counting Contrib Counting the number of people in low-crowd-density (e.g. less than 10 people) and high-crowd-density (e.g. thousands of people) scenarios.

2. 港中文、商汤科技MMLAB平台

基本情况

框架:PyTorch

简介地址:

https://zhuanlan.zhihu.com/p/160966882

https://mp.weixin.qq.com/s/nzhkVi0HT0wstewfUz4dWQ

开源地址:

https://github.com/open-mmlab

计算机视觉方向包括

深度学习全功能开发开源平台汇总_第1张图片

  • MMCV(基础支持)

更完善的训练流程支持,文件读取多后端支持,图片处理多后端支持,更丰富的 CNN 模块,20 种常用算子的高效 CUDA 实现。

  • MMDetection(目标检测)

支持算法多达 40 个,300+ 预训练模型,速度和精度相比 1.0 版本有很大提升。通过更细粒度的模块化设计,MMDetection 的任务拓展性大大增强,成为了检测相关项目的基础平台。

  • MMSegmentation(语义分割)

在统一的设定下,对 10+ 种语义分割算法的进行了统一 benchmark,并且达到了更高的精度。开源了 200+ 预训练模型和丰富的配置,方便进行横向纵向比较。支持丰富的训练和测试 trick,可以应对多样的使用场景。支持混合精度训练,节省显存 40%以上。

  • MMDetection3D(3D目标检测)

MMDetection 的 3D 扩展,训练速度领先其他3D点云检测代码库。任务拓展性强,可作为3D检测相关任务的基础平台,支持单模态和多模态 3D 检测,同时支持室内和室外场景数据集SOTA。无缝使用 MMDetection 中的全部已有算法和模型,尽享丝滑用户体验。

  • MMEditing(图像和视频编辑)

设计了统一的框架同时支持超分、修复、抠图、生成四大方向,方便用户在一个框架中调用不同的算法和模型。提供了丰富的底层视觉算法的高效算子,拥有高效的训练和测试速度,复现了多个未开源算法,并首次公开实现了基于 PyTorch 的 GAN 的分布式训练。

  • MMAction2(动作识别)

支持 8 种模型和 8 个数据集,提供完善的数据处理脚本,支持多种解码器进行高效的在线视频解码,训练速度快,模型精度高。更细粒度的模块化设计,易于拓展。

  • MMClassification(图像分类)

丰富的训练配置,支持常见网络的复现,并提供相应的预训练模型。

  • MMPose(人体关键点检测)

首个同时支持 top-down 和 bottom-up 类型算法的开源人体姿态估计框架,并实现了目前学术界的最高训练精度和最快训练速度。基于模块化的设计,易于拓展和修改。后续将支持多人3D姿态估计、密集人群的姿态估计、人脸关键点等更多模块。

3. FaceBook Detectron2 平台

基本情况

框架:PyTorch

简介地址:

https://www.leiphone.com/news/201910/P2sq3UjmbsI6QdiW.html

开源地址:

https://github.com/facebookresearch/detectron2

计算机视觉方向包括

Projects by Facebook

Note that these are research projects, and therefore may not have the same level of support or stability as detectron2.

  • DensePose: Dense Human Pose Estimation In The Wild
  • Scale-Aware Trident Networks for Object Detection
  • TensorMask: A Foundation for Dense Object Segmentation
  • Mesh R-CNN
  • PointRend: Image Segmentation as Rendering
  • Momentum Contrast for Unsupervised Visual Representation Learning
  • DETR: End-to-End Object Detection with Transformers

External Projects

External projects in the community that use detectron2:

  • AdelaiDet, a detection toolbox including FCOS, BlendMask, etc.
  • CenterMask
  • Res2Net backbones
  • VoVNet backbones
  • FsDet, Few-Shot Object Detection.

4. 图森未来SimpleDet

基本情况

框架:MXNet

简介地址:

https://www.jiqizhixin.com/articles/2019-01-29-21

开源地址:

https://github.com/TuSimple/simpledet

Box, and Mask Detection

Model Backbone Head Train Schedule GPU Image/GPU FP16 Train MEM Train Speed Box AP(Mask AP) Link
Faster R50v1-C4 C5-512ROI 1X 8X 1080Ti 2 no 5.9G(4.5G) 20 img/s 34.2 model
Faster R50v1-C4 C5-512ROI 1X 8X TitanV 2 yes 6.1G 49 img/s 34.4 model
Faster R50v2-C4 C5-256ROI 1X 8X 1080Ti 2 no 5.1G 33 img/s 32.8 model
Cascade R50v2-C5 2MLP 1X 8X 1080Ti 2 no 5.9G 25 img/s 38.8 model
Cascade R50v1-FPN 2MLP 1X 8X 1080Ti 2 no 6.6G 21 img/s 40.3 model
Faster R50v1-FPN 2MLP 1X 8X 1080Ti 2 no 4.2G(2.6G) 43 img/s 36.5 model
Mask R50v1-FPN 2MLP+4CONV 1X 8X 1080Ti 2 no 5.7G(3.6G) 35 img/s 37.1(33.7) model
Retina R50v1-FPN 4Conv 1X 8X 1080Ti 2 no 4.7G(2.2G) 44 img/s 35.6 model
Trident R50v2-C4 C5-128ROI 1X 8X 1080Ti 2 no 7.0G(5.3G) 20 img/s 37.1 model
Faster R101v2-C4 C5-256ROI 1X 8X 1080Ti 2 no 6.7G 25 img/s 37.6 model
Faster-SyncBN R101v2-C4 C5-256ROI 1X 8X 1080Ti 2 no 7.8G 17 img/s 38.6 model
Faster R101v1-C4 C5-512ROI 1X 8X 1080Ti 2 no 10.2G 16 img/s 38.3 model
Faster R101v1-C4 C5-512ROI 1X 8X TitanV 2 yes 7.0G 35 img/s 38.1 model
Faster R101v1-FPN 2MLP 1X 8X 1080Ti 2 no 5.3G(3.4G) 31 img/s 38.7 model
Cascade R101v2-C5 2MLP 1X 8X 1080Ti 2 no 7.6G 22 img/s 41.0 model
Cascade R101v1-FPN 2MLP 1X 8X 1080Ti 2 no 8.7G 19 img/s 42.3 model
Trident R101v2-C4 C5-128ROI 1X 8X 1080Ti 1 no 6.6G 9 img/s 40.6 model
Trident-Fast R101v2-C4 C5-128ROI 1X 8X 1080Ti 1 no 6.6G 9 img/s 39.9 model
Retina R101v1-FPN 4Conv 1X 8X 1080Ti 2 no 5.9G(3.0G) 31 img/s 37.8 model

你可能感兴趣的:(深度学习项目,深度学习,算法)