Java进阶架构实战——Redis在京东到家的订单中的使用

Java进阶架构实战——Redis在京东到家的订单中的使用_第1张图片

背景

Redis作为一款性能优异的内存数据库,在互联网公司有着多种应用场景,下面介绍下Redis在京东到家的订单列表中的使用场景。主要从以下几个方面来介绍:

  1. 订单列表在Redis中的存储结构
  2. Redis和DB数据一致性保证
  3. Redis中的分布式锁
  4. 缓存防穿透和雪崩

订单列表在Redis中的存储结构

  • 订单列表数据在缓存中,是以用户的唯一标识作为键,以一个按下单时间倒序的有序集合为值进行存储的。大家都知道Redis的sorted set中每个元素都有一个分数,Redis就是根据这个分数排序的。订单有序集合中的每个元素是将时间毫秒数+订单号最后3位作为分数进行排序的。为什么不只用毫秒数作为分数呢?因为我们的下单时间只精确到秒,如果不加订单号最后3位,若同一秒有两个或两个以上订单时,排序分数就会一样,从而导致根据分数从缓存查询订单时不能保证唯一性。而我们的订单号的生成规则可以保证同一秒内的订单号的最后3位肯定不一样,从而可以解决上述问题。
  • 有必要将一个用户的所有订单都放入缓存吗?针对用户订单是没有必要的,因为很少有用户去看很久以前的历史订单。真正的热点数据其实也就是最近下过的一些订单,所以,为了节省内存空间,只需要存放一个用户最近下过的N条订单就行了,这个N,相当于一个阀值,超过了这个阀值,再从数据库中查询订单数据,当然,这部分查库操作已经是很小概率的操作了。

Redis和DB数据一致性保证

只要有多份数据,就会涉及到数据一致性的问题。Redis和数据库的数据一致性,也是必然要面对的问题。我们这边的订单数据是先更新数据库,数据库更新成功后,再更新缓存,若数据库操作成功,缓存操作失败了,就出现了数据不一致的情况。保证数据一致性我们前后使用过两种方式:

  • 方式一:
  1. 循环5次更新缓存操作,直到更新成功退出循环,这一步主要能减小由于网络瞬间抖动导致的更新缓存失败的概率,对于缓存接口长时间不可用,靠循环调用更新接口是不能补救接口调用失败的。
  2. 如果循环5次还没有更新成功,就通过worker去定时扫描出数据库的数据,去和缓存中的数据进行比较,对缓存中的状态不正确的数据进行纠正。
  • 方式二:
  1. 跟方式一的第一步操作一样
  2. 若循环更新5次仍不成功,则发一个缓存更新失败的mq,通过消费mq去更新缓存,会比通过定时任务扫描更及时,也不会有扫库的耗时操作。此方式也是我们现在使用的方式。

代码示例:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IAWyqRGR-1658982747693)(https://upload-images.jianshu.io/upload_images/27964194-567b2e49be9514ac.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)]


Redis中的分布式锁

分布式锁常用的实现方式有Redis和zookeeper,本文主要介绍下Redis的分布式锁,然后再介绍下我们使用分布式锁的场景。

Redis分布式锁在2.6.12版本之后的实现方式比较简单,只需要使用一个命令即可:

SET key value [EX seconds] [NX]

其中,可选参数EX seconds :设置键的过期时间为 seconds 秒;NX :只在键不存在时,才对键进行设置操作。

这个命令相当于2.6.12之前的setNx和expire两个命令的原子操作命令。Redis的JAVA客户端分布式锁实现示例代码:

2.6.12版本之后:

Java进阶架构实战——Redis在京东到家的订单中的使用_第2张图片

2.6.12版本之前,由于没有一个上述的原子命令,需要一些命令组合实现,但不能简单的使用setNx、expire这两个命令,因为如果setNx成功,expire命令失败时,恰好执行删除lockKey的也执行失败,key就永远不会过期,就会出现死锁问题,如:

Java进阶架构实战——Redis在京东到家的订单中的使用_第3张图片

第(1)步设置lockKey失效时间失败,lockKey在缓存永久保存。

第(2)步没来得及释放锁时,系统崩溃,finally块没来得及执行,最终导致锁永远在缓存中,所有其他线程再也获取不到锁。所以不能单纯的依靠设置锁的失效时间来防止释放锁失败,需要通过下列方法防止这种情况,但比较繁琐,不过2.6.12版本之前也必须通过如下方法才更为妥当:

public booelan getLock(String lockKey) { boolean lock = false; while (!lock) { String expireTime = String.valueOf(System.currentTimeMillis() + 5000); // (1)第一个获得锁的线程,将lockKey的值设置为当前时间+5000毫秒,后面会判断,如果5秒之后,获得锁的线程还没有执行完,会忽略之前获得锁的线程,而直接获取锁,所以这个时间需要根据自己业务的执行时间来设置长短。 lock = shardedXCommands.setNX(lockKey, expireTime); if (lock) { // 已经获取了这个锁 直接返回已经获得锁的标识 return lock; } // 没获得锁的线程可以执行到这里:从Redis获取老的时间戳 String oldTimeStr = shardedXCommands.get(lockKey); if (oldTimeStr != null && !"".equals(oldTimeStr.trim())) { Long oldTimeLong = Long.valueOf(oldTimeStr); // 当前的时间戳 Long currentTimeLong = System.currentTimeMillis(); // (2)如果oldTimeLong小于当前时间了,说明之前持有锁的线程执行时间大于5秒了,就强制忽略该线程所持有的锁,重新设置自己的锁 if (oldTimeLong < currentTimeLong) {  // (3)调用getset方法获取之前的时间戳,注意这里会出现多个线程竞争,但肯定只会有一个线程会拿到第一次获取到锁时设置的expireTime String oldTimeStr2 = shardedXCommands.getSet(lockKey, String.valueOf(System.currentTimeMillis() + 5000));  // (4)如果刚获取的时间戳和之前获取的时间戳一样的话,说明没有其他线程在占用这个锁,则此线程可以获取这个锁. if (oldTimeStr2 != null && oldTimeStr.equals(oldTimeStr2)) {  lock = true; // 获取锁标记 break; } } } // 暂停50ms,重新循环 try { Thread.sleep(50); } catch (InterruptedException e) { log.error(e); } } return lock;}

上述方法主要使用了Redis的setNX、getSet两个方法,不依赖Redis的expire方法,即便是删除锁失败时,上面逻辑第(2)步也会规避这个问题。

  • 订单使用分布式锁的场景是订单状态有变更的时候,需要先使用锁–>读缓存数据–>判断当前订单状态是否允许变更为别的状态–>更新缓存中的订单状态–>释放锁。

缓存防穿透和雪崩

  • 缓存为我们挡住了80-90%甚至更多的流量,然而当缓存中的大量热点数据恰巧在差不多的时间过期时,或者当有人恶意伪造一些缓存中根本没有的数据疯狂刷接口时,就会有大量的请求直接穿透缓存访问到数据库(因为查询数据策略是缓存没有命中,就查数据库),给数据库造成巨大压力,甚至使数据库崩溃,这肯定是我们系统不允许出现的情况。我们需要针对这种情况进行处理。下图是处理流程图:

Java进阶架构实战——Redis在京东到家的订单中的使用_第4张图片

代码示例:

Java进阶架构实战——Redis在京东到家的订单中的使用_第5张图片

Java进阶架构实战——Redis在京东到家的订单中的使用_第6张图片

防止穿透和雪崩的关键地方在于使用分布式锁和锁的粒度控制。首先初始化了128(0-127)个锁,然后让所有缓存没命中的用户去竞争这128个锁,得到锁后并且再一次判断缓存中依然没有数据的,才有权利去查询数据库。没有将锁粒度限制到用户级别,是因为如果粒度太小的话,某一个时间点有太多的用户去请求,同样会有很多的请求打到数据库。比如:

在时间点T1有10000个用户的缓存数据失效了,恰恰他们又在时间点T1都请求数据,如果锁粒度是用户级别,那么这10000个用户都会有各自的锁,也就意味着他们都可以去访问数据库,同样会对数据库造成巨大压力。而如果是通过用户id去hashcode和127取模,意味着最多会产生128个锁,最多会有128个并发请求访问到数据库,其他的请求会由于没有竞争到锁而阻塞,待第一批获取到锁的线程释放锁之后,剩下的请求再进行竞争锁,但此次竞争到锁的线程,在执行代码段2中第4步时:orderRedisCache.isOrderListExist(userId),缓存中有可能已经有数据了,就不用再查数据库了,依次类推,从而可以挡住很多数据库请求,起到很好的保护数据库的作用。

总结

  1. 缓存中存放了用户的部分订单,且是以下单时间+订单号最后三位算出分数(这样做是为因为下单时间只精确到秒,为了防止同一秒下多个订单导致排序分数相同),进行排序的有序集合。
  2. 数据库更新成功,缓存更新失败,这样导致数据不一致,可以通过更新缓存失败后发mq的策略进行缓存更新尝试,比定时任务更高效,更及时。
  3. Redis分布式锁实现,2.6版本前,通过setNx和getSet两个命令实现,2.6版本之后,Redis提供了SET key value [EX seconds] [NX]这个命令可以实现。
  4. 防穿透和雪崩依赖了分布式锁,值得注意的是锁粒度不能细到用户级别,可以根据数据库性能和业务要求,算出合适的锁的数量,让所有未命中缓存的用户通过hashCode和锁数量取模,去竞争锁,得到锁的才获得查库权利。

Java进阶架构实战——Redis在京东到家的订单中的使用_第7张图片

你可能感兴趣的:(redis,java,架构,jvm,大数据)