goodFeaturesToTrack \text{goodFeaturesToTrack} goodFeaturesToTrack算法来自于 Shi et al. \text{Shi et al.} Shi et al.的一篇论文,论文名称就叫 Good Features to track \text{Good Features to track} Good Features to track。算法流程大致分为以下几个步骤:
在 OpenCV \text{OpenCV} OpenCV中,关于 goodFeaturesToTrack \text{goodFeaturesToTrack} goodFeaturesToTrack函数的核心代码位于 featureselect.cpp \text{featureselect.cpp} featureselect.cpp文件中:
void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize, int gradientSize,
bool useHarrisDetector, double harrisK )
// _image:输入图像
// _corners:输出角点
// _maxCorners:最大角点数
// qualityLevel:角点质量等级(百分比)
// minDistance:角点最小间距
// _mask:像素掩码矩阵
// blockSize = 3:角点观察窗大小
// gradientSize = 3:梯度算子阶数( Sobel 算子阶数)
// useHarrisDetector = false:是否检测 Harris 角点
// harrisK = 0.04: Harris 角点阈值
{
CV_INSTRUMENT_REGION();
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 );
// 参数检查
CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) );
// 参数检查
CV_OCL_RUN(_image.dims() <= 2 && _image.isUMat(),
ocl_goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance,
_mask, blockSize, gradientSize, useHarrisDetector, harrisK))
// OpenCL 加速
Mat image = _image.getMat(), eig, tmp;
if (image.empty())
{
_corners.release();
return;
}
// Disabled due to bad accuracy
CV_OVX_RUN(false && useHarrisDetector && _mask.empty() &&
!ovx::skipSmallImages(image.cols, image.rows),
openvx_harris(image, _corners, maxCorners, qualityLevel, minDistance, blockSize, gradientSize, harrisK))
// OpenVX 加速
if( useHarrisDetector )
cornerHarris( image, eig, blockSize, gradientSize, harrisK );
else
cornerMinEigenVal( image, eig, blockSize, gradientSize );
// 计算各像素点的最小特征值,生成特征值矩阵
double maxVal = 0;
minMaxLoc( eig, 0, &maxVal, 0, 0, _mask ); // 根据 _mask 矩阵,查找特征值矩阵中的最大值
threshold( eig, eig, maxVal*qualityLevel, 0, THRESH_TOZERO );
// 对特征值矩阵进行阈值分割,将小于 maxVal * qualityLevel 的特征值清零。
dilate( eig, tmp, Mat()); // 对特征值矩阵进行膨胀操作,使用 3 x 3 结构元素,进行非极大值抑制
Size imgsize = image.size();
std::vector tmpCorners;
// collect list of pointers to features - put them into temporary image
Mat mask = _mask.getMat();
for( int y = 1; y < imgsize.height - 1; y++ )
{
const float* eig_data = (const float*)eig.ptr(y);
const float* tmp_data = (const float*)tmp.ptr(y);
const uchar* mask_data = mask.data ? mask.ptr(y) : 0;
for( int x = 1; x < imgsize.width - 1; x++ )
{
float val = eig_data[x];
if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) )
// 将没有被 mask 掩中的极大值特征值地址放入 tmpCorners 向量
tmpCorners.push_back(eig_data + x);
}
}
std::vector corners;
size_t i, j, total = tmpCorners.size(), ncorners = 0;
if (total == 0)
{
_corners.release();
return;
}
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
// 对 tmpCorners 进行排序
if (minDistance >= 1) // 如果对 tmpCorners 有 minDistance 约束
{
// Partition the image into larger grids
int w = image.cols;
int h = image.rows;
const int cell_size = cvRound(minDistance); // 对 minDistance 进行四舍五入,确定网格大小
const int grid_width = (w + cell_size - 1) / cell_size; // 判断图像宽度可以容纳多少网格
const int grid_height = (h + cell_size - 1) / cell_size;// 判断图像高度可以容纳多少网格
std::vector > grid(grid_width*grid_height);
// 根据 grid_width 以及 grid_height 生成网格
minDistance *= minDistance; // 对 minDistance 进行平方
/* 对 tmpCorners 进行遍历 */
for( i = 0; i < total; i++ )
{
int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
// tmpCorners 在特征值矩阵中的偏移量
int y = (int)(ofs / eig.step); // tmpCorners 对应像素点的x坐标
int x = (int)((ofs - y*eig.step)/sizeof(float)); // tmpCorners 对应像素点的y坐标
bool good = true; // good 标志置为 true
int x_cell = x / cell_size; // 判断 tmpCorners 落在哪个网格中( x 方向编号)
int y_cell = y / cell_size; // 判断 tmpCorners 落在哪个网格中( y 方向编号)
int x1 = x_cell - 1; // 确定 tmpCorners 网格左上方网格 x 编号
int y1 = y_cell - 1; // 确定 tmpCorners 网格左上方网格 y 编号
int x2 = x_cell + 1; // 确定 tmpCorners 网格右下方网格 x 编号
int y2 = y_cell + 1; // 确定 tmpCorners 网格右下方网格 y 编号
// boundary check
x1 = std::max(0, x1); // 对网格编号进行修正,防止溢出
y1 = std::max(0, y1); // 对网格编号进行修正,防止溢出
x2 = std::min(grid_width-1, x2); // 对网格编号进行修正,防止溢出
y2 = std::min(grid_height-1, y2); // 对网格编号进行修正,防止溢出
/* 对九个网格进行遍历 */
for( int yy = y1; yy <= y2; yy++ )
{
for( int xx = x1; xx <= x2; xx++ )
{
std::vector &m = grid[yy*grid_width + xx];
/* 如果当前网格存在特征点,则遍历所有特征点,并判断 tmpCorners 与该特征点的距离是否满足 minDistance 约束,如果不满足,则将 good 标志置为 false 并跳出网格遍历 */
if( m.size() )
{
for(j = 0; j < m.size(); j++)
{
float dx = x - m[j].x;
float dy = y - m[j].y;
if( dx*dx + dy*dy < minDistance )
{
good = false;
goto break_out;
}
}
}
}
}
break_out:
if (good) // 如果 tmpCorners 满足 minDistance 约束
{
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
// 将 tmpCorners 的坐标记录到网格中
corners.push_back(Point2f((float)x, (float)y)); // 将 tmpCorners 记录到 corners 向量
++ncorners; // ncorners 计数器++
if( maxCorners > 0 && (int)ncorners == maxCorners )
// 如果当记录的角点数已经达到 maxCorners ,则跳出 tmpCorners 遍历
break;
}
}
}
else
{
for( i = 0; i < total; i++ )
{
int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
int y = (int)(ofs / eig.step);
int x = (int)((ofs - y*eig.step)/sizeof(float));
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
// 将角点拷贝至 _corners
}