学号:17020110019 姓名:高少魁
转载自:https://mp.weixin.qq.com/s/XbYFDZOwHZZ7zLVZ-iF2sw
【嵌牛导读】我们都知道算法的重要性,数据结构和算法本身解决的就是「快」和「省」的问题,那就是如何让代码跑得快,还能节省存储空间。今天就来学习一下如何分析、统计算法的执行效率和资源消耗。
【嵌牛鼻子】数据结构 算法 时间复杂度 空间复杂度 资源优化
【嵌牛正文】
为何需要复杂度分析
可能你会有些疑惑,我把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还要做时间、空间复杂度分析呢?这种分析方法能比我实实在在跑一遍得到的数据更准确吗?
实实在在跑一遍这种属于非要自己去尝试,没有根据合理方法预测我们要的。很多数据结构和算法书籍还给这种方法起了一个名字,叫事后统计法。这种统计方法有非常大的局限性。
1. 测试结果非常依赖测试环境
测试环境中硬件的不同会对测试结果有很大的影响。比如,我们拿同样一段代码,分别用 Intel Core i7 处理器和 Intel Core i3 处理器来运行,不用说,i7 处理器要比 i3 处理器执行的速度快很多。
就好像同一辆车放在深圳北环大道与我家农村小山沟跑是不一样的。
2.测试结果受数据规模的影响很大
后面我们会讲排序算法,我们先拿它举个例子。对同一个排序算法,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。
极端情况下,如果数据已经是有序的,那排序算法不需要做任何操作,执行时间就会非常短。除此之外,如果测试数据规模太小,测试结果可能无法真实地反应算法的性能。
比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快!
所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这就是我们今天要讲的时间、空间复杂度分析方法。
大O复杂度表示法
算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?就像检测车子马力与油耗似的。
求 1,2,3…n 的累加和。现在,一起估算一下这段代码的执行时间。
intcal(intn){
intsum =0;
inti =1;
for(; i <= n; ++i) {
sum = sum + i;
}
returnsum;
}
从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为 unit_time单位时间。
在这个假设的基础之上,这段代码的总执行时间是多少呢?
第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
我们继续分析下面这段代码。
intcal(intn){
intsum =0;
inti =1;
intj =1;
for(; i <= n; ++i) {
j =1;
for(; j <= n; ++j) {
sum = sum + i * j;
}
}
}
我们依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?
第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n*unit_time 的执行时间,第 7、8 行代码循环执行了 n²遍,所以需要 2n² * unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n²+ 2n + 3)*unit_time。
尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。
我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!
T(n) = O(f(n))
其中,T(n)我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小。f(n)表示每行代码执行的次数总和。
公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。
所以,第一个例子中的,第二个例子中的 T(n) = O(2n²+2n+3)。这就是大 O 时间复杂度表示法。
大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。敲黑板了,时间复杂度表达的是变化趋势,并不是真正的执行时间。
当 n 很大时,你可以把它想象成 100000、1000000。而公式中的“低阶、常量、系数”三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了。
时间复杂度分析
前面介绍了大 O 时间复杂度的由来和表示方法。现在我们来看下,如何分析一段代码的时间复杂度?有三个比较实用的方法可以分享。
1. 只关注循环执行次数最多的一段代码
大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。擒贼先擒王就是这么回事。
这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。
intcal(intn){
intsum =0;
inti =1;
for(; i <= n; ++i) {
sum = sum + i;
}
returnsum;
}
其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。
循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。
2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
看如下代码可以先试着分析一下,然后再往下看跟我的分析思路是否一样。
intcal(intn){
intsum_1 =0;
intp =1;
for(; p <100; ++p) {
sum_1 = sum_1 + p;
}
intsum_2 =0;
intq =1;
for(; q < n; ++q) {
sum_2 = sum_2 + q;
}
intsum_3 =0;
inti =1;
intj =1;
for(; i <= n; ++i) {
j =1;
for(; j <= n; ++j) {
sum_3 = sum_3 + i * j;
}
}
returnsum_1 + sum_2 + sum_3;
}
这个代码分为三部分,分别是求 sum_1、sum_2、sum_3。我们可以分别分析每一部分的时间复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。
第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。
这里再强调一下,即便这段代码循环 10000 次、100000 次,只要是一个已知的数,跟 n 无关,照样也是常量级的执行时间。当 n 无限大的时候,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。
那第二段代码和第三段代码的时间复杂度是多少呢?答案是 O(n) 和 O(n²),你应该能很容易就分析出来,这里就不啰嗦了。
综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为 O(n²)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:
如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n)))
3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
刚刚说了一个加法原则,这里说的乘法原则,以此类推,你也应该能「猜到」公式。这个是效率最差的。
如果 T1(n)=O(f(n)),T2(n)=O(g(n));
那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n))。
几种常见的时间复杂度实例
虽然代码千差万别,但是常见的复杂度量级并不多。我稍微总结了一下,有以下几种,这些复杂度量级几乎涵盖了今后可能接触的所有代码的复杂度量级。
常量阶
对数阶
线性阶
线性对数阶
平方阶 O(n²)、立方阶 O(n³)…..k 次方阶 O(nk)
指数阶 O(2ⁿ)
阶乘阶 O(n!)
对于上面罗列的复杂度量级,我们可以粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2ⁿ)和 O(n!)。
当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。因此,这里就不展开讲了。
我们主要来看几种常见的多项式时间复杂度。
1. O(1) 之一击必杀
首先我们必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。
inta =1;
intb =2;
intc =3;
我们的 HashMap get()、put(),其实就是 O(1) 时间复杂度。
只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
2. O(logn)、O(nlogn)
对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。
i=1;
while(i <= n) {
i = i *2;
}
根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。
从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。
所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过2x=n 求解 x 这个问题我们高中就学过了,可以得出 x=log2 n,所以,这段代码的时间复杂度就是 O(log2 n)。
我把代码稍微改下,大家一起看看下面这段代码的时间复杂度是多少?
i=1;
while(i <= n) {
i = i *3;
}
很简单就能看出来,这段代码的时间复杂度为 O(log3 n)。
实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。为什么呢?
我们知道,对数之间是可以互相转换的,log3 n 就等于 log3 2 * log2n,所以 O(log3 n) = O(C *log2n),其中 C= log3 2是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2 n) 就等于 O(log3 n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。
如果你理解了前面讲的 O(logn),那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。
如下所示就是O(nlogn),内部 while循环是 O(logn),被外层 for 循环包起来。
for(m =1; m < n; m++) {
i =1;
while(i < n) {
i = i *2;
}
}
3. O(m+n)、O(m*n)
我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。
intcal(intm,intn){
intsum_1 =0;
inti =1;
for(; i < m; ++i) {
sum_1 = sum_1 + i;
}
intsum_2 =0;
intj =1;
for(; j < n; ++j) {
sum_2 = sum_2 + j;
}
returnsum_1 + sum_2;
}
从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。因此,上面代码的时间复杂度就是 O(m+n)。
针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。
4.线性阶O(n)
看下面这段代码会执行多少次呢?
for(i=1; i<=n; i++) {
j = i;
j++;
}
第1行会执行 n 次,第2行和第3行会分别执行n次,总的执行时间也就是 3n + 1 次,那它的时间复杂度表示是 O(3n + 1) 吗?No !
还是那句话:“大O符号表示法并不是用来真实代表算法的执行时间的,它是用来表示代码执行时间的增长变化趋势的”。
所以它的时间复杂度其实是O(n);
5.平方阶O(n²)
for(x=1; i <= n; x++){
for(i =1; i <= n; i++) {
j = i;
j++;
}
}
把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) 了。
6.立方阶O(n³)、K次方阶O(nk)
参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似。
空间复杂度分析
理解了前面讲的内容,空间复杂度分析方法学起来就非常简单了。
时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。
voidprint(intn){
inti =0;
int[] a =newint[n];
for(i; i
a[i] = i * i;
}
}
跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
打个不恰当的比喻,就像我们的手机,现在工艺越来越好,手机也越来越薄,占用体积越来越小。也就是用更好的模具设计放置零件,而模具就像是空间复杂度,更小的体积容纳更多的原件。
我们常见的空间复杂度就是 O(1)、O(n)、O(n²),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。
空间复杂度 O(1)
如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为 O(1)。
inti =1;
intj =2;
++i;
j++;
intm = i + j;
代码中的 i、j、m 所分配的空间都不随着处理数据量变化,因此它的空间复杂度 S(n) = O(1)。
空间复杂度 O(n)
int[] m =newint[n]
for(i=1; i <= n; ++i) {
j = i;
j++;
}
这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,后面虽然有循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,即 S(n) = O(n)。
总结
基础复杂度分析的知识到此就讲完了,我们来总结一下。
复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。
常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n² ),几乎所有的数据结构和算法的复杂度都跑不出这几个。