北大张志华推荐经典机器学习书

勿在浮沙筑高台
请仔细研读下列书籍

初阶课程

概率与统计

  • [1] Larry Wasserman. All of Statistics

    All of Statistics

  • [2] Morris H. DeGroot, Mark J. Schervish. Probability and Statistics

    image.png

  • [3] T. W. Anderson John Wiley An Introduction to Multivariate Statistical Analysis

    image.png

  • [4] R. J. Muirhead . Aspects of Multivariate Statistical Theory

    image.png

线性代数

  • [1] Gilbert Strang. Introduction to Linear Algebra

    image.png

  • [2] Trefethen N. Lloyd,David Bau lll.Numerical Linear Algebra

    image.png

机器学习课程

  • [1] John D. Kelleher,Brian Mac Namee. Fundamentals of Machine Learning for Predictive Data Analytics

    image.png

  • [2] Andrew R. Webb,Keith D. Copsey. Statistical Pattern Recognition

    image.png

  • [3] Trevor HastieRobert TibshiraniJerome Friedman Elements of statistical learning

    image.png

中阶课程

数值优化

  • [1] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, second edition. Springer, 2006.

    image.png

  • [2] Timothy Sauer. Numerical Analysis

    image.png

算法课程

  • Michael Mitzenmacher,Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic
    Analysis

    image.png

程序设计方面

  • David B. Kirk,Wenmei W. Hwu. Programming
    Massively Parallel Processors: A Hands-on Approach
    , Second Edition
    image.png

高阶课程

  1. Trefethen N. Lloyd and David Bau III. Numerical linear algebra. SIAM, 1997.

    image.png

  2. Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
    Algorithms
    . Cambridge Press, 2014.

    image.png

  3. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press.

    image.png

  4. Jorge Nocedal and Stephen J. Wright. Numerical Optimization, second edition. Springer, 2006.


    image.png
  5. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
    Probabilistic Analysis
    . Cambridge University Press, 2005.

    image.png

  6. Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1986.

    image.png

  7. George Casella and Roger L. Berger. Statistical Inference, second edition. The Wadsworth Group,2002.

    image.png

  8. Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Optimization: Theory
    and Examples
    , second edition. Springer, 2006.

    image.png

进阶课程

  • [1] Shai Shalew-Shwartz and Shai Ben-David. Understanding Machine Learning: from Theory
    to Algorithms
    . Cambridge University Press. 2014

    image.png

  • [2] George Casella and Roger L. Berger. Statistical Inference, second edition. The Wadsworth
    Group, 2002.

image.png
  • [3] Andrew Gelman et al. Bayesian Data Analysis, Third edition. CRC, 2014.

    image.png

  • [4] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
    Techniques
    . MIT, 2009.

    image.png

  • [5] Jonathan M. Borwein and Adrian S. Lewis. **Convex Analysis and Nonlinear Optimization:


    image.png

Theory and Examples**, second edition. Springer, 2006.

  • [6] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundation of Data Science. 2016.

  • [7] Richaerd S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT, 2012.

    image.png

  • [8] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
    Sons, 2012.

    image.png

你可能感兴趣的:(北大张志华推荐经典机器学习书)